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A MathematicalTheoryof Communication

By C. E. SHANNON

INTRODUCTION

�
HE recentdevelopmentof variousmethodsof modulationsuch as PCM andPPM which exchange
bandwidth for signal-to-noiseratio hasintensified theinterest in ageneraltheoryof communication.A

basis for such a theoryiscontainedin theimportant papersof Nyquist1 andHartley2 on this subject. In the
present paper we will extend the theory to include anumber of new factors, in particular the effectof noise
in the channel, andthesavings possibledueto thestatisticalstructureof theoriginal messageand dueto the
natureof thefinal destination of the information.

The fundamental problem of communication is that of reproducing at onepoint either exactly or ap-
proximately a messageselectedat anotherpoint. Frequently the messageshavemeaning; that is they refer
to or arecorrelatedaccordingto somesystemwith certainphysical or conceptualentities. These semantic
aspectsof communicationare irrelevant to theengineeringproblem.Thesignificantaspectis thattheactual
messageis oneselectedfroma set of possiblemessages.Thesystemmustbe designedto operatefor each
possibleselection,notjust theonewhichwill actuallybechosensincethis isunknown atthetimeof design.

If thenumberof messagesin theset is finite thenthisnumberor any monotonic function of thisnumber
canbe regardedasa measureof the informationproducedwhenonemessageis chosenfrom the set,all
choicesbeing equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Althoughthis definitionmust be generalizedconsiderablywhenwe consider theinfluenceof the
statisticsof the message andwhenwe have a continuousrangeof messages, we will in all casesuse an
essentially logarithmic measure.

Thelogarithmic measureismoreconvenientfor variousreasons:

1. It is practically moreuseful. Parametersof engineering importancesuchas time,bandwidth, number
of relays, etc., tend to vary linearlywith the logarithm of the number of possibilities. For example,
addingonerelay to agroupdoublesthenumberof possiblestatesof therelays. It adds1 to thebase2
logarithm of this number. Doubling the time roughly squaresthe numberof possible messages, or
doublesthe logarithm,etc.

2. It is nearerto our intuitive feeling as to theproper measure. This isclosely relatedto (1) sincewe in-
tuitively measuresentitiesby linearcomparison with common standards. Onefeels, for example, that
two punchedcards shouldhave twice thecapacity ofonefor informationstorage,and two identical
channels twice the capacityof one for transmitting information.

3. It is mathematicallymore suitable. Many of the limiting operations aresimple in termsof the loga-
rithm but would requireclumsyrestatement in termsof the number of possibilities.

Thechoiceof a logarithmic base correspondsto the choiceof a unit for measuring information. If the
base2 is usedthe resulting units may be calledbinary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relayor a flip-flop circuit, canstore one bit of
information.N suchdevicescanstoreN bits, sincethetotal numberof possiblestates is2N andlog22N � N.
If thebase10 isusedthe units maybecalleddecimaldigits. Since

log2M � log10M � log102
� 3 � 32log10M �

1Nyquist, H., “Certain FactorsAffectingTelegraphSpeed,” Bell SystemTechnical Journal, April 1924, p.324; “Certain Topicsin
TelegraphTransmissionTheory,” A.I.E.E.Trans., v. 47,April 1928, p. 617.

2Hartley, R. V. L., “Transmissionof Information,” Bell SystemTechnical Journal, July 1928, p. 535.
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Fig. 1—Schematic diagram of ageneral communication system.

a decimal digit is about31
3 bits. A digit wheelon a desk computing machine hasten stable positionsand

thereforehasastoragecapacity ofonedecimaldigit. In analyticalwork whereintegrationanddifferentiation
areinvolved thebase e is sometimesuseful. The resulting units of information will be callednatural units.
Changefrom thebasea to baseb merelyrequiresmultiplication by logba.

By a communication system we will meana system of the type indicatedschematically in Fig. 1. It
consistsof essentially fiveparts:

1. An information sourcewhich producesamessageor sequenceof messagesto be communicatedto the
receiving terminal.Themessagemaybe of varioustypes:(a) A sequenceof lettersas ina telegraph
of teletype system; (b) A single function of time f � t � as in radio or telephony; (c) A function of
time and othervariables asin blackandwhite television — herethemessagemaybe thoughtof asa
function f � x � y� t � of two spacecoordinatesand time, the light intensity at point � x � y� and time t on a
pickuptubeplate;(d) Two or morefunctionsof time,say f � t � , g � t � , h � t � — this is thecasein “ three-
dimensional” soundtransmissionor if thesystem is intendedto serviceseveral individualchannels in
multiplex; (e)Severalfunctionsof severalvariables— in color television themessageconsistsof three
functions f � x � y� t � , g � x � y� t � , h � x � y� t � definedin a three-dimensionalcontinuum— we mayalso think
of these threefunctionsascomponents of a vector field defined in the region — similarly, several
black andwhite television sourceswould produce“messages” consisting of a numberof functions
of threevariables;(f) Various combinations alsooccur, for example in television with anassociated
audio channel.

2. A transmitter which operates on the message in some way to producea signal suitable for trans-
mission over the channel. In telephonythis operation consists merely of changing soundpressure
into a proportionalelectrical current. In telegraphywe have anencoding operation which produces
a sequenceof dots, dashesandspaceson thechannelcorrespondingto themessage. In a multiplex
PCM systemthe differentspeechfunctionsmustbe sampled,compressed,quantizedandencoded,
andfinally interleaved properly to construct the signal. Vocodersystems, television and frequency
modulationareotherexamplesof complex operationsapplied to themessageto obtain thesignal.

3. Thechannelis merelythemediumusedto transmitthesignalfrom transmitterto receiver. It maybe
apair of wires, a coaxial cable, a bandof radio frequencies, a beamof light, etc.

4. Thereceiverordinarilyperformstheinverseoperationof thatdoneby thetransmitter, reconstructing
themessagefrom thesignal.

5. Thedestination is theperson (or thing) for whom themessage is intended.

We wish to consider certain generalproblemsinvolving communication systems. To do this it is first
necessaryto represent the variouselements involvedasmathematicalentities, suitably idealizedfrom their
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physicalcounterparts. Wemayroughly classify communicationsystemsinto threemain categories: discrete,
continuousandmixed. By a discretesystem we will meanonein which both the messageandthesignal
area sequenceof discrete symbols. A typical case is telegraphywherethemessageis a sequenceof letters
andthesignalasequenceof dots, dashesandspaces. A continuoussystemis onein which themessageand
signal are both treatedascontinuousfunctions, e.g., radio or television. A mixedsystem is onein which
bothdiscreteandcontinuousvariablesappear, e.g.,PCM transmissionof speech.

We first considerthe discretecase.This casehasapplicationsnot only in communicationtheory, but
also in the theoryof computingmachines, thedesign of telephoneexchangesand otherfields. In addition
thediscretecase formsa foundationfor thecontinuousandmixedcaseswhichwill betreatedin thesecond
half of thepaper.

PART I: DISCRETE NOISELESSSYSTEMS

1. THE DISCRETE NOISELESSCHANNEL

Teletype and telegraphy aretwo simple examplesof a discretechannel for transmitting information. Gen-
erally, a discretechannel will meana systemwhereby a sequenceof choicesfrom a finite setof elementary
symbolsS1 � � � � � Sn canbe transmittedfrom onepoint to another. Eachof the symbolsSi is assumed to have
a certainduration in time ti seconds(not necessarily the samefor differentSi , for example the dots and
dashesin telegraphy).It is not requiredthatall possible sequencesof the Si becapable of transmission on
the system; certainsequencesonly may be allowed. Thesewill be possible signals for the channel. Thus
in telegraphysuppose thesymbolsare: (1) A dot, consisting of li ne closure for a unit of time and thenline
openfor a unit of time; (2) A dash, consisting of threetime units of closureand oneunit open;(3) A letter
spaceconsisting of, say, threeunits of lineopen;(4) A word space of six units of lineopen.We mightplace
therestrictiononallowablesequencesthatnospacesfollow eachother(for if two letterspacesareadjacent,
it is identicalwith a word space).Thequestionwe now consideris how onecanmeasurethecapacity of
sucha channelto transmit information.

In the teletype case whereall symbols are of the sameduration, andany sequenceof the 32 symbols
is allowed the answeris easy. Eachsymbol represents five bits of information. If the system transmits n
symbolsper secondit is naturalto say that thechannelhasa capacity of5n bits per second.This doesnot
mean that the teletype channel will always be transmitting information at this rate— this is the maximum
possiblerateandwhetheror not theactualratereachesthismaximumdependsonthesourceof information
which feeds thechannel, aswill appearlater.

In themoregeneralcasewith diff erent lengthsof symbolsandconstraintsontheallowedsequences,we
make the following definition:
Definition: ThecapacityC of adiscrete channelisgivenby

C � Lim
T � ∞

logN � T �
T

whereN � T � is thenumber of allowedsignals of duration T.
It is easilyseenthat in the teletypecasethis reduces to theprevious result. It canbeshown that the limit

in question will exist as a finite numberin most cases ofinterest. Suppose all sequencesof the symbols
S1 � � � � � Sn areallowed and these symbols have durationst1 � � � � � tn. What is the channelcapacity?If N � t �
represents the numberof sequencesof duration t we have

N � t � � N � t � t1 � �
N � t � t2 � � � � � �

N � t � tn � �
The total numberis equal to the sum of the numbersof sequencesending in S1 � S2 � � � � � Sn andtheseare
N � t � t1 � � N � t � t2 � � � � � � N � t � tn � , respectively. Accordingto a well-known resultin finite differences,N � t �
is thenasymptotic for large t to Xt

0 whereX0 is the largest realsolution of thecharacteristicequation:

X � t1 �
X � t2 � � � � �

X � tn � 1
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andtherefore
C � logX0 �

In casetherearerestrictionsonallowedsequenceswemaystill oftenobtainadiff erenceequation of this
type andfindC from thecharacteristicequation.In thetelegraphycasementionedabove

N � t � � N � t � 2� �
N � t � 4� �

N � t � 5� �
N � t � 7� �

N � t � 8� �
N � t � 10�

as we seeby countingsequencesof symbolsaccordingto the last or next to the last symbol occurring.
HenceC is � log � 0 where� 0 is thepositive rootof 1 � � 2 � � 4 � � 5 � � 7 � � 8 � � 10. Solving thiswe find
C � 0 � 539.

A very generaltype of restrictionwhich may be placedon allowed sequencesis the following: We
imagine anumberof possiblestatesa1 � a2 � � � � � am. Foreachstateonly certainsymbolsfromthesetS1 � � � � � Sn

canbe transmitted(diff erent subsetsfor the different states).Whenone of thesehasbeentransmittedthe
statechanges to a new statedepending both on the old stateand the particular symbol transmitted. The
telegraphcase is a simple example of this. Thereare two states depending onwhetheror not a spacewas
the lastsymbol transmitted. If so, then only a dot or a dashcanbe sent next and the statealways changes.
If not, any symbol canbe transmittedandthestatechangesif aspaceis sent, otherwiseit remains thesame.
Theconditionscanbeindicatedin a lineargraphas shown in Fig. 2. Thejunctionpointscorrespondto the

DASH

DOT

DASH

DOT

LETTER SPACE

WORD SPACE

Fig. 2—Graphical representation of theconstraints on telegraph symbols.

statesand the lines indicatethesymbolspossible in astateandtheresulting state.In Appendix 1 it is shown
that if the conditionsonallowed sequencescanbedescribedin this formC will exist and canbe calculated
in accordancewith thefollowing result:

Theorem1: Let b
�
s�

i j bethe duration of thesth symbol which is allowable in state i andleadsto state j.
ThenthechannelcapacityC isequalto logW whereW is the largest realrootof thedeterminantequation:

��� ∑
s

W � b � s�
i j � � i j

��� � 0

where� i j
� 1 if i � j andis zerootherwise.

For example, in thetelegraphcase (Fig. 2) the determinantis:
����

� 1 � W � 2 �
W � 4 �

� W � 3 �
W � 6 � � W � 2 �

W � 4 � 1�
���� � 0 �

On expansionthis leadsto theequation givenabovefor this case.

2. THE DISCRETE SOURCE OF INFORMATION

Wehaveseenthatunderverygeneralconditionsthelogarithmof thenumberof possiblesignals inadiscrete
channel increaseslinearlywith time. The capacity to transmit information canbe specifiedby giving this
rateof increase,thenumberof bits per secondrequiredto specifytheparticularsignalused.

Wenow consider the informationsource.How isan informationsourceto bedescribedmathematically,
andhow muchinformation in bits per secondis producedin a givensource? Themain point at issue is the
effectof statistical knowledgeaboutthe sourcein reducing therequired capacity of the channel, by the use
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of proper encoding of the information. In telegraphy, for example,themessagesto betransmittedconsist of
sequencesof letters. Thesesequences, however, arenotcompletely random.In general, they formsentences
and have the statisticalstructure of, say, English. The letterE occursmore frequently thanQ, the sequence
TH more frequently thanXP, etc. The existenceof this structure allows one to make asaving in time (or
channelcapacity) by properly encoding the messagesequencesinto signalsequences. This is alreadydone
to a limited extentin telegraphyby using theshortest channelsymbol, a dot, for themost commonEnglish
letter E; while the infrequentletters, Q, X, Z arerepresentedby longersequencesof dots and dashes. This
ideais carriedstill further in certaincommercialcodes where common words and phrasesarerepresented
by four- or five-letter codegroupswith a considerablesaving in averagetime. Thestandardizedgreeting
andanniversarytelegramsnow in use extendthis to thepoint of encodingasentenceor two into arelatively
shortsequenceof numbers.

We canthink of a discretesourceasgeneratingthemessage,symbolby symbol. It will choose succes-
sive symbolsaccordingto certainprobabilitiesdepending,in general,on precedingchoicesaswell asthe
particular symbolsin question. A physical system,or a mathematical modelof a system which produces
sucha sequenceof symbols governedby a set of probabilities, is known asa stochasticprocess.3 We may
considera discretesource,therefore,to berepresentedby a stochasticprocess.Conversely, any stochastic
processwhichproducesadiscretesequenceof symbolschosenfromafiniteset may beconsideredadiscrete
source.This will includesuchcasesas:

1. Naturalwritten languagessuchasEnglish, German,Chinese.

2. Continuousinformation sourcesthat have beenrendereddiscrete by somequantizing process. For
example, thequantizedspeechfrom a PCMtransmitter, or a quantizedtelevisionsignal.

3. Mathematicalcaseswherewe merely defineabstractlya stochasticprocesswhich generatesa se-
quenceof symbols. Thefollowingareexamples ofthis last typeof source.

(A) SupposewehavefivelettersA, B, C, D, E whicharechoseneachwith probability.2,successive
choicesbeing independent. This would leadto a sequenceof which the following is a typical
example.
B D C B C EC C C A D C B D DA A E C E E A
A B B D A E E C A C E E B A E E C B C E A D.
Thiswasconstructedwith theuseof a table ofrandomnumbers.4

(B) Usingthesamefive letterslet theprobabilitiesbe .4, .1, .2, .2, .1,respectively, with successive
choicesindependent. A typical messagefrom this sourceis then:

A A A C D C B D C E AA D A D A C E D A
E A D C A B E D A D D C E C A A A A A D .

(C) A morecomplicatedstructure is obtainedif successive symbolsare not chosen independently
but their probabilitiesdependon precedingletters. In the simplestcaseof this type a choice
dependsonly on the precedingletterand not on onesbeforethat. Thestatisticalstructurecan
thenbedescribed byasetof transition probabilities pi � j � , theprobability that letteri is followed
by letter j. Theindicesi and j rangeover all the possiblesymbols. A secondequivalent way of
specifying thestructureis to givethe“digram”probabilities p � i � j � , i.e.,therelativefrequency of
thedigrami j . Theletter frequenciesp � i � , (theprobability of letteri), thetransition probabilities

3See,for example, S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Reviews of Modern Physics, v. 15,No. 1,
January1943, p. 1.

4Kendall andSmith, Tablesof RandomSamplingNumbers, Cambridge,1939.
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pi � j � and thedigramprobabilities p � i � j � arerelatedby the following formulas:

p � i � � ∑
j

p � i � j � � ∑
j

p � j � i � � ∑
j

p � j � p j � i �

p � i � j � � p � i � pi � j �

∑
j

pi � j � � ∑
i

p � i � � ∑
i � j

p � i � j � � 1 �

As a specificexamplesupposetherearethreelettersA, B, C with theprobability tables:

pi � j � j

A B C

A 0 4
5

1
5

i B 1
2

1
2 0

C 1
2

2
5

1
10

i p � i �

A 9
27

B 16
27

C 2
27

p � i � j � j

A B C

A 0 4
15

1
15

i B 8
27

8
27 0

C 1
27

4
135

1
135

A typical messagefrom this sourceis the following:

A B B A B A B A B A B A B A B B B A B B B B B A B A B A B A B A B B B A C A C A B
B A B B B B A B B A B A C B B B A B A.
Thenext increase in complexity would involve trigramfrequenciesbut no more.Thechoiceof
a letterwould dependon theprecedingtwo lettersbut not on themessagebeforethatpoint. A
set of trigramfrequencies p � i � j � k� or equivalently a set of transition probabilities pi j � k� would
berequired. Continuing in this way oneobtainssuccessively morecomplicatedstochastic pro-
cesses.In thegeneraln-gramcase aset of n-gramprobabilities p � i1 � i2 � � � � � in � or of transition
probabilities pi1 � i2 � � � � � in � 1 � in � is requiredto specify thestatisticalstructure.

(D) Stochastic processes can also be defined which producea text consisting of a sequenceof
“words.” Suppose therearefive lettersA, B, C, D, E and 16 “words” in the languagewith
associatedprobabilities:

.10A .16BEBE .11CABED .04DEB

.04ADEB .04BED .05CEED .15DEED

.05ADEE .02BEED .08DAB .01EAB

.01BADD .05CA .04DAD .05EE

Suppose successive “words” are chosenindependentlyandare separatedby a space.A typical
messagemightbe:
DAB EEA BEBE DEED DEB ADEE ADEE EEDEB BEBE BEBE BEBEADEE BED DEED
DEEDCEEDADEE A DEED DEEDBEBE CABED BEBE BED DAB DEEDADEB.

If all thewordsare of finite lengththis processis equivalent to oneof theprecedingtype,but
the description may be simpler in termsof the word structure and probabilities. We mayalso
generalizehereand introducetransition probabilitiesbetweenwords, etc.

These artificial languagesare useful in constructing simple problemsand examplesto illustratevari-
ous possibilities. We canalso approximateto a naturallanguageby meansof a series of simple artificial
languages. Thezero-orderapproximationis obtainedby choosing all letterswith thesameprobability and
independently. Thefirst-orderapproximationis obtainedby choosing successive lettersindependentlybut
eachletter having the same probability that it hasin the naturallanguage.5 Thus, in the first-orderap-
proximation to English, E is chosen with probability .12 (its frequency in normal English) and W with
probability .02, but thereis no influencebetweenadjacentlettersandno tendency to form the preferred

5Letter, digramandtrigramfrequenciesaregiven in SecretandUrgent by FletcherPratt,BlueRibbonBooks, 1939.Word frequen-
ciesare tabulatedin Relative Frequencyof English Speech Sounds, G. Dewey, HarvardUniversity Press, 1923.
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digramssuchas TH, ED, etc. In thesecond-orderapproximation,digramstructure is introduced. After a
letter is chosen,the next oneis chosenin accordancewith the frequencieswith which the various letters
follow the first one. This requiresa table of digramfrequencies pi � j � . In the third-orderapproximation,
trigramstructureis introduced.Eachletter is chosenwith probabilitieswhich dependon theprecedingtwo
letters.

3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give avisual ideaof how this series ofprocessesapproachesa language,typicalsequencesin the approx-
imationsto English have beenconstructed and aregivenbelow. In all caseswe have assumeda 27-symbol
“alphabet,” the26 lettersanda space.

1. Zero-orderapproximation(symbolsindependentandequiprobable).

XFOML RXKHRJFFJUJZLPWCFWKCYJ FFJEYVKCQSGHYDQPAAMKBZAA CIBZL-
HJQD.

2. First-order approximation (symbols independent but with frequenciesof English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-orderapproximation(digramstructureas in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSOTIZIN ANDY TOBESEACE CTISBE.

4. Third-orderapproximation(trigramstructureasin English).

IN NO IST LAT WHEY CRATICT FROUREBIRS GROCID PONDENOMEOF DEMONS-
TURESOF THE REPTAGIN ISREGOACTIONA OF CRE.

5. First-order word approximation. Ratherthan continuewith tetragram, � � � , n-gramstructureit is easier
and betterto jump at this point to word units. Herewords arechosen independently but with their
appropriatefrequencies.

REPRESENTINGAND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENTNAT-
URAL HEREHETHEA IN CAME THETO OF TOEXPERT GRAY COMETOFURNISHES
THE LINE MESSAGEHAD BE THESE.

6. Second-orderwordapproximation.Theword transition probabilitiesare correctbut no furtherstruc-
ture isincluded.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTEROFTHISPOINTIS THEREFOREANOTHERMETHODFORTHELETTERS THAT
THE TIME OF WHO EVERTOLD THE PROBLEM FORAN UNEXPECTED.

Theresemblance toordinaryEnglishtext increasesquitenoticeablyateachof theabovesteps. Notethat
thesesampleshavereasonablygoodstructureout to abouttwice therangethatis taken intoaccountin their
construction. Thusin (3) the statistical process insuresreasonable text for two-letter sequences, but four-
letter sequencesfrom thesamplecanusually befitted into goodsentences. In (6) sequencesof four ormore
wordscaneasily beplacedin sentenceswithoutunusualor strainedconstructions. Theparticularsequence
of ten words“attackonanEnglish writer thatthecharacterof this” isnotat all unreasonable. It appearsthen
thata sufficiently complex stochasticprocesswill give asatisfactory representation of a discretesource.

The first two sampleswereconstructedby the use of a bookof randomnumbersin conjunctionwith
(for example 2) a table of letter frequencies. This methodmight have beencontinuedfor (3), (4) and (5),
sincedigram,trigramand word frequency tables are available, but a simpler equivalent methodwas used.
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To construct (3) for example, oneopensa bookat randomandselects a letter at randomon the page.This
letter is recorded.Thebook is thenopenedto anotherpageand onereadsuntil this letter is encountered.
The succeedingletteris thenrecorded.Turning to anotherpagethis secondletter is searchedfor and the
succeedingletterrecorded,etc. A similar processwasusedfor (4), (5) and(6). It would be interestingif
furtherapproximationscould be constructed, but thelabor involvedbecomesenormousat thenext stage.

4. GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS

Stochastic processes of the typedescribedabove areknown mathematically as discrete Markoff processes
and have beenextensively studied in the literature.6 Thegeneralcasecanbedescribedas follows: There
exist a finite numberof possible “states” of a system; S1 � S2 � � � � � Sn. In addition there isa set of transition
probabilities; pi � j � the probability that if the system is in stateSi it will next go to stateSj . To make this
Markoff processintoan informationsourceweneed onlyassumethata letterisproducedfor eachtransition
from onestateto another. Thestateswill correspondto the“residueof influence”from precedingletters.

The situation canbe representedgraphically asshown in Figs. 3, 4and 5. The “states”are the junction

A
B

C

D

E

� �

� �

� �

� �

� �

Fig. 3—A graph corresponding to thesourcein exampleB.

pointsin thegraphandtheprobabilitiesandlettersproducedfor atransitionaregiven besidethecorrespond-
ing line. Figure3 is for theexample B in Section 2,while Fig. 4correspondsto the example C. In Fig. 3

A
A

B

B

BC

C

� �

� � � �

� �

� �
� �

� �

Fig. 4—A graph corresponding to thesourcein exampleC.

thereis only onestatesincesuccessive lettersareindependent.In Fig. 4 thereare asmany statesasletters.
If a trigramexample wereconstructed therewould be at most n2 statescorresponding to the possible pairs
of lettersprecedingtheonebeingchosen.Figure5 is a graphfor thecaseof word structurein exampleD.
HereScorrespondsto the“space”symbol.

5. ERGODIC AND M IXED SOURCES

As we have indicatedabove adiscretesourcefor our purposescanbe consideredto be representedby a
Markoff process.Among the possible discreteMarkoff processesthere is a group with special properties
of significancein communication theory. This special classconsists of the “ergodic” processes and we
shall call thecorrespondingsourcesergodicsources. Althougharigorousdefinitionof an ergodicprocessis
somewhatinvolved,thegeneralideais simple. In anergodicprocessevery sequenceproducedby theprocess

6For a detailedtreatment seeM. Fréchet,Méthodedesfonctionsarbitraires. Théorie desév́enementsen châıne dansle casd’un
nombrefini d’étatspossibles. Paris, Gauthier-Villars, 1938.
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is the samein statistical properties. Thusthe letter frequencies, digramfrequencies, etc., obtainedfrom
particular sequences,will, as the lengths of the sequences increase,approachdefinite limits independent
of the particular sequence. Actually this is not true of every sequencebut the set for which it is false has
probabilityzero.Roughlytheergodicpropertymeansstatisticalhomogeneity.

All the examplesof artificial languagesgivenaboveareergodic.This property is relatedto thestructure
of the corresponding graph. If the graphhasthefollowing two properties7 thecorrespondingprocess will
beergodic:

1. Thegraphdoesnotconsist of two isolatedpartsA andB suchthat it is impossibleto gofrom junction
points in partA to junction points in partB alonglinesof thegraph in thedirection of arrowsand also
impossible to gofrom junctionsin partB to junctionsin partA.

2. A closedseriesof lines in the graph with all arrowson the linespointing in the sameorientation will
becalleda“circuit.” The“length” of a circuit is thenumber of lines init. Thus inFig. 5seriesBEBES
isa circuit of length 5. Thesecondproperty requiredisthatthegreatest commondivisor ofthelengths
of all circuits in thegraph beone.

S

S

S

A

A

A

A

A

B

B

B

B

B

B B
C

D

D

D

D

D

D

E

E

E

E

E

E

E

E

E

E

E

Fig. 5—A graph corresponding to thesourcein exampleD.

If thefirstcondition is satisfiedbut thesecond oneviolatedby havingthegreatestcommon divisor equal
to d � 1, the sequenceshave acertain typeof periodic structure. Thevarioussequencesfall i nto d different
classeswhich arestatistically the sameapart from a shift of the origin (i.e.,which letterin the sequenceis
calledletter1). By a shift of from 0 upto d � 1 any sequencecanbemade statistically equivalent to any
other. A simple example with d � 2 is the following: Thereare threepossible lettersa � b � c. Lettera is
followedwith eitherb or c with probabilities 1

3 and 2
3 respectively. Eitherb or c is always followedby letter

a. Thusa typicalsequenceis
a b a c ac a c a b a c a b a ba c a c�

This typeof situation isnotof muchimportancefor ourwork.
If thefirst conditionisviolatedthegraphmay beseparatedintoaset of subgraphseachof whichsatisfies

thefirst condition.We will assumethatthesecondconditionisalso satisfied for eachsubgraph.We have in
this case whatmay becalled a “mixed” sourcemadeupof a numberof purecomponents. Thecomponents
correspondto thevarioussubgraphs. If L1, L2, L3 � � � � arethecomponentsourceswe maywrite

L � p1L1
�

p2L2
�

p3L3
� � � �

7These are restatementsin terms of thegraphof conditionsgiven in Fréchet.
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wherepi is theprobabilityof thecomponentsourceLi .
Physicallythesituationrepresentedis this: ThereareseveraldifferentsourcesL1, L2, L3 � � � � which are

eachof homogeneousstatistical structure(i.e., they are ergodic). We do not know a priori which is to be
used,but oncethesequencestarts in a given purecomponentLi , it continuesindefinitelyaccordingto the
statistical structureof thatcomponent.

As anexampleonemay take two of the processesdefinedabove andassumep1
� � 2 and p2

� � 8. A
sequencefrom themixed source

L � � 2L1
� � 8L2

would be obtainedby choosing first L1 or L2 with probabilities .2 and .8and after this choicegenerating a
sequencefrom whicheverwaschosen.

Exceptwhenthecontraryis statedweshall assumeasourceto beergodic.This assumptionenablesone
to identify averagesalongasequencewith averagesover theensembleof possiblesequences(theprobability
of a discrepancy being zero). For example the relative frequency of the letter A in a particular infinite
sequencewill be, with probability one, equal to its relative frequency in theensemble of sequences.

If Pi is the probability of statei andpi � j � the transition probability to state j, thenfor the processto be
stationary it is clearthat thePi must satisfy equilibriumconditions:

Pj
� ∑

i

Pi pi � j � �

In theergodiccase it canbeshown thatwith any startingconditionstheprobabilitiesPj � N � of being in state
j afterN symbols,approachthe equilib rium values asN � ∞.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have representeda discreteinformation sourceasa Markoff process.Can we define aquantity which
will measure,in somesense,how muchinformationis “produced”by sucha process, or better, atwhatrate
information isproduced?

Suppose we have aset of possible events whose probabilitiesof occurrenceare p1 � p2 � � � � � pn. These
probabilities are known but that is all we know concerningwhich event will occur. Can we find a measure
of how much“choice” is involvedin theselectionof theeventor of how uncertainwe areof theoutcome?

If thereis suchameasure,sayH � p1 � p2 � � � � � pn � , it is reasonableto requireof it thefollowing properties:

1. H should be continuousin the pi .

2. If all the pi areequal, pi
� 1

n, then H should be amonotonic increasing function of n. With equally
likely eventsthereismorechoice,or uncertainty, whentherearemorepossible events.

3. If a choicebebrokendown into two successive choices, theoriginal H should be theweightedsum
of the individualvaluesof H. The meaning of this is illustratedin Fig. 6. At the left we have three

� � �
� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

Fig. 6—Decomposition of a choicefrom threepossibilities.

possibilities p1
� 1

2, p2
� 1

3, p3
� 1

6. On theright wefirst choosebetweentwo possibilities eachwith
probability 1

2, and if the second occursmake another choicewith probabilities 2
3, 1

3. The final results
havethesameprobabilities asbefore.We require, in this specialcase,that

H � 1
2 � 1

3 � 1
6 � � H � 1

2 � 1
2 � � 1

2H � 2
3 � 1

3 � �
Thecoefficient 1

2 is becausethissecondchoiceonly occurshalf thetime.
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In Appendix 2, thefollowingresult isestablished:

Theorem2: Theonly H satisfying the threeaboveassumptions is of the form:

H � � K
n

∑
i � 1

pi logpi

whereK isa positiveconstant.

This theorem,andtheassumptionsrequiredfor itsproof,are in noway necessary for thepresenttheory.
It is given chiefly to lend acertainplausibility to someof our laterdefinitions. Therealjustification of these
definitions, however, will reside in their implications.

Quantitiesof theform H � � ∑ pi logpi (theconstant K merely amountsto achoiceof aunit of measure)
playacentralrole in informationtheoryasmeasuresof information,choiceanduncertainty. Theform of H
will berecognizedasthatof entropy asdefinedin certainformulationsof statistical mechanics8 wherepi is
the probability of a systembeing in cell i of its phasespace.H is then,for example, theH in Boltzmann’s
famousH theorem.Weshallcall H � � ∑ pi logpi the entropy of thesetof probabilities p1 � � � � � pn. If x is a
chancevariable we will write H � x� for its entropy; thusx is not anargumentof a function but a labelfor a
number, to diff erentiateit from H � y� say, the entropy of the chancevariabley.

The entropy in the caseof two possibilities with probabilities p andq � 1 � p, namely

H � � � plogp
�

qlogq�
is plottedin Fig. 7 asa function of p.

H
BITS

p

�
� �

� �

� �

� �

� �

� �

� �

� �

� �

� � �

� � � � � � � � � � � � � � � � � � � � � �

Fig. 7—Entropy in the caseof two possibilities with probabilities p and � 1 � p� .

The quantity H hasa numberof interesting properties which further substantiate it as a reasonable
measureof choiceor information.

1. H � 0 if and only if all the pi but onearezero,this onehaving the valueunity. Thusonly whenwe
arecertain of theoutcomedoesH vanish. OtherwiseH is positive.

2. For a given n, H is a maximum andequal to logn whenall the pi areequal (i.e., 1
n). This is also

intuitively themost uncertainsituation.

8See,for example, R. C. Tolman, Principlesof Statistical Mechanics, Oxford,Clarendon,1938.
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3. Supposetherearetwo events, x andy, in questionwith mpossibilities for thefirstandn for thesecond.
Let p � i � j � betheprobability of the joint occurrenceof i for thefirst and j for thesecond.Theentropy of the
joint event is

H � x � y� � � ∑
i � j

p � i � j � log p � i � j �

while

H � x� � � ∑
i � j

p � i � j � log∑
j

p � i � j �

H � y� � � ∑
i � j

p � i � j � log∑
i

p � i � j � �

It is easilyshown that
H � x � y� � H � x� �

H � y�
with equality only if the eventsareindependent (i.e., p � i � j � � p � i � p � j � ). Theuncertainty of a joint eventis
lessthanor equalto thesum of theindividualuncertainties.

4. Any change toward equalization of the probabilities p1 � p2 � � � � � pn increasesH. Thusif p1 � p2 and
we increasep1, decreasingp2 anequalamountso that p1 andp2 aremorenearlyequal,thenH increases.
Moregenerally, if we performany “averaging” operation onthe pi of the form

p�i � ∑
j

ai j p j

where∑i ai j
� ∑ j ai j

� 1, andall ai j � 0, thenH increases(exceptin thespecialcasewherethis transfor-
mationamounts to nomorethanapermutation of thep j with H of courseremaining thesame).

5. Suppose therearetwo chanceeventsx andy asin 3,notnecessarily independent. For any particular
value i thatx canassumethereis aconditional probability pi � j � thaty hasthevalue j. This isgivenby

pi � j � � p � i � j �
∑ j p � i � j � �

Wedefinetheconditionalentropyof y, Hx � y� asthe average ofthe entropy of y for eachvalueof x, weighted
accordingto theprobability ofgettingthatparticularx. That is

Hx � y� � � ∑
i � j

p � i � j � logpi � j � �

This quantity measureshow uncertainweareof y onthe averagewhenweknow x. Substituting thevalueof
pi � j � weobtain

Hx � y� � � ∑
i � j

p � i � j � log p � i � j � � ∑
i � j

p � i � j � log∑
j

p � i � j �
� H � x � y� � H � x�

or
H � x � y� � H � x� �

Hx � y� �
Theuncertainty (or entropy) of the joint event x � y is the uncertainty of x plus the uncertainty of y whenx is
known.

6. From3 and 5we have
H � x� �

H � y� � H � x � y� � H � x� �
Hx � y� �

Hence
H � y� � Hx � y� �

Theuncertainty of y isnever increasedby knowledgeof x. It will bedecreasedunlessxandyareindependent
events,in whichcaseit isnotchanged.
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7. THE ENTROPY OF AN INFORMATION SOURCE

Considera discretesourceof thefinite statetypeconsideredabove. For eachpossiblestatei therewill be a
setof probabilities pi � j � of producing thevarious possible symbols j. Thusthereis an entropy Hi for each
state.The entropy of the sourcewill be definedas the averageof theseHi weightedin accordancewith the
probability of occurrenceof thestatesin question:

H � ∑
i

PiHi

� � ∑
i � j

Pi pi � j � log pi � j � �

This is theentropy of thesourceper symbolof text. If theMarkoff processis proceedingat a definitetime
rate thereisalso an entropy per second

H � � ∑
i

fiHi

where fi is the averagefrequency (occurrencesper second)of state i. Clearly

H � � mH

wherem is the averagenumberof symbolsproducedper second.H or H � measuresthe amountof informa-
tion generatedby thesourceper symbolor per second.If thelogarithmicbase is 2, they will representbits
per symbolor per second.

If successivesymbolsare independentthenH is simply � ∑ pi logpi wherepi is theprobability of sym-
bol i. Suppose in this case we consider a longmessageof N symbols. It will contain with high probability
aboutp1N occurrencesof thefirst symbol, p2N occurrencesof thesecond,etc.Hencetheprobability ofthis
particularmessagewill beroughly

p � pp1N
1 pp2N

2
� � �

ppnN
n

or

logp
�� N∑

i

pi logpi

logp
�� � NH

H
�� log1� p

N
�

H is thusapproximatelythelogarithm of thereciprocalprobability of atypical longsequencedividedby the
numberof symbols in thesequence.Thesameresult holdsfor any source.Statedmoreprecisely we have
(seeAppendix 3):

Theorem3: Given any � � 0 and � � 0, wecanfind an N0 suchthatthesequencesof any lengthN � N0

fall into two classes:

1. A setwhose total probability is lessthan � .

2. Theremainder, all of whosemembershaveprobabilities satisfying the inequality
����
logp � 1

N
� H

���� � � �

In otherwordswearealmost certain to have
logp� 1

N
very closeto H whenN is large.

A closelyrelatedresult dealswith thenumber of sequencesof variousprobabilities. Consideragain the
sequencesof length N and let them be arranged in order of decreasing probability . We define n � q� to be
the numberwe must take from this set startingwith the most probableonein orderto accumulatea total
probability q for thosetaken.

13



Theorem4:

Lim
N � ∞

logn � q�
N

� H

whenq doesnotequal0 or 1.

Wemayinterpretlogn � q� asthenumberof bits requiredto specifythesequencewhenwe consideronly

the most probablesequenceswith a total probability q. Then
logn � q�

N
is the numberof bits per symbol for

the specification. Thetheoremsays that for largeN this will be independent of q andequalto H. The rate
of growth of the logarithm of thenumberof reasonably probablesequencesis given byH, regardlessof our
interpretation of “ reasonably probable.” Dueto theseresults, whichareproved in Appendix 3, it ispossible
for most purposesto treatthe longsequencesasthoughtherewerejust 2HN of them,eachwith aprobability
2 � HN.

The next two theoremsshow that H and H � can be determined by limiting operations directly from
thestatistics of themessagesequences, without referenceto thestatesandtransition probabilitiesbetween
states.

Theorem5: Let p � Bi � be the probability of asequenceBi of symbolsfrom thesource.Let

GN
� �

1
N ∑

i
p � Bi � logp � Bi �

wherethesum is over all sequencesBi containingN symbols. ThenGN isa monotonic decreasing function
of N and

Lim
N � ∞

GN
� H �

Theorem6: Let p � Bi � Sj � be the probability of sequence Bi followed by symbol Sj and pBi � Sj � �
p � Bi � Sj � � p � Bi � be the conditional probability of Sj afterBi . Let

FN
� � ∑

i � j
p � Bi � Sj � logpBi � Sj �

wherethe sum is over all blocksBi of N � 1 symbolsand over all symbolsSj . Then FN is a monotonic
decreasingfunctionof N,

FN
� NGN � � N � 1� GN � 1 �

GN
� 1

N

N

∑
n� 1

Fn �

FN � GN �
andLimN � ∞ FN

� H.

Theseresultsarederivedin Appendix 3. They show thataseries ofapproximationsto H canbeobtained
by considering only thestatistical structureof thesequencesextending over 1 � 2 � � � � � N symbols. FN is the
better approximation. In fact FN is the entropy of the Nth orderapproximation to the sourceof the type
discussed above. If thereareno statistical influencesextending over more thanN symbols, that is if the
conditionalprobabilityof thenext symbolknowing thepreceding� N � 1� isnotchangedby aknowledgeof
any beforethat, thenFN

� H. FN of course is the conditionalentropy of the next symbolwhenthe � N � 1�
precedingonesareknown, while GN is the entropy per symbolof blocksof N symbols.

Theratioof the entropy of asourceto themaximum value it could havewhile still restrictedto thesame
symbolswill becalledits relativeentropy. This is themaximumcompressionpossiblewhenwe encodeinto
the samealphabet. One minus the relative entropy is the redundancy. Theredundancy of ordinaryEnglish,
not considering statistical structure over greaterdistancesthan abouteight letters, is roughly 50%. This
meansthatwhenwe write English half of whatwe write is determinedby thestructureof the languageand
half is chosenfreely. Thefigure50%was found byseveral independentmethodswhich all gave results in
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thisneighborhood.One isby calculation of theentropy of theapproximationsto English. A secondmethod
is to deletea certainfraction of the lettersfrom a sample of English text and then let someone attempt to
restore them. If they canberestoredwhen50%aredeleted the redundancy must be greaterthan50%. A
third methoddependsoncertain known results in cryptography.

Two extremesof redundancy in English prose arerepresentedby Basic English and byJamesJoyce’s
book“FinnegansWake”. TheBasic English vocabulary is limited to 850wordsand the redundancy is very
high. This is reflectedin the expansion that occurs whena passage is translatedinto BasicEnglish. Joyce
on theotherhandenlargesthe vocabularyand isallegedto achieve a compressionof semantic content.

The redundancy of a languageis related to the existenceof crossword puzzles. If the redundancy is
zeroany sequenceof letters is a reasonable text in the language andany two-dimensionalarray of letters
formsacrosswordpuzzle. If theredundancy is toohighthelanguageimposestoomany constraintsfor large
crosswordpuzzlesto bepossible. A moredetailed analysis showsthat if weassumethe constraintsimposed
by the languageareof a rather chaotic andrandomnature, largecrossword puzzlesarejust possible when
theredundancy is50%. If theredundancy is33%, three-dimensionalcrosswordpuzzles should bepossible,
etc.

8. REPRESENTATION OF THE ENCODING AND DECODING OPERATIONS

We have yet to representmathematicallythe operationsperformedby the transmitterand receiver in en-
codinganddecodingtheinformation.Eitherof these will becalleda discretetransducer. Theinput to the
transducerisa sequenceof inputsymbolsand itsoutputasequenceof outputsymbols. Thetransducermay
haveaninternalmemoryso that itsoutputdependsnot only onthepresentinputsymbolbut also onthepast
history. We assumethat the internalmemoryisfinite, i.e.,thereexist a finitenumbermof possiblestates of
the transducerandthat its outputis a function of thepresentstate andthepresent inputsymbol. The next
statewill be asecondfunction of thesetwo quantities. Thusatransducercanbedescribed bytwo functions:

yn
� f � xn � � n �

� n� 1
� g � xn � � n �

where

xn is the nth inputsymbol,

� n is thestateof the transducerwhenthenth inputsymbol is introduced,

yn is the outputsymbol (or sequenceof outputsymbols) produced whenxn is introducedif thestate is� n.

If theoutputsymbolsof onetransducercanbeidentifiedwith theinputsymbolsof asecond,they canbe
connectedin tandemand the result is also a transducer. If thereexists a secondtransducerwhich operates
on theoutputof thefirst and recovers theoriginal input,thefirst transducerwill becallednon-singularand
thesecondwill be calledits inverse.

Theorem7: The outputof a finite state transducerdriven by a finite state statistical sourceis a finite
statestatisticalsource,with entropy (per unittime) less thanor equalto thatof theinput. If thetransducer
isnon-singular they areequal.

Let � representthestateof thesource,which producesasequenceof symbolsxi ; andlet
�

bethestateof
thetransducer, whichproduces, in itsoutput, blocksof symbolsy j . Thecombinedsystemcanberepresented
by the“productstatespace”of pairs � � � � � . Two pointsin thespace � � 1 � �

1 � and � � 2 � �
2 � , areconnectedby

a line if � 1 canproducean x which changes
�

1 to
�

2, and this line is giventhe probability of that x in this
case.Theline is labeledwith theblock of y j symbolsproducedby thetransducer. Theentropy of theoutput
canbecalculatedas theweightedsumover thestates.If wesumfirst on

�
eachresultingtermis lessthanor

equalto thecorresponding term for � , hencethe entropy is not increased. If thetransduceris non-singular
let itsoutputbeconnectedto theinversetransducer. If H �1, H �2 andH �3 aretheoutputentropies ofthesource,
thefirst andsecondtransducersrespectively, thenH �1 � H �2 � H �3 � H �1 andthereforeH �1 � H �2.
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Supposewehave asystemof constraintsonpossiblesequencesof thetypewhich canberepresented by

a lineargraph as in Fig. 2. If probabilities p
�
s�

i j wereassigned to thevariouslinesconnecting statei to statej
this would becomeasource.Thereisoneparticularassignment whichmaximizestheresulting entropy (see
Appendix 4).

Theorem8: Let the system of constraints considered asa channelhave acapacity C � logW. If we
assign

p
�
s�

i j
� B j

Bi
W � � � s�

i j

where
� �

s�
i j is theduration of the sth symbol leading from statei to statej andtheBi satisfy

Bi
� ∑

s� j
B jW � � � s�

i j

thenH is maximizedandequalto C.

By proper assignment of the transition probabilities the entropy of symbols on a channel canbe maxi-
mizedat thechannelcapacity.

9. THE FUNDAMENTAL THEOREM FOR A NOISELESSCHANNEL

We will now justify our interpretation of H asthe rateof generatinginformationby proving thatH deter-
mines thechannel capacity requiredwith most efficient coding.

Theorem9: Let a sourcehave entropy H � bits per symbol� anda channelhave acapacityC � bits per
second� . Thenit is possible to encodethe outputof the sourcein such a way asto transmit at the average

rate
C
H

� � symbolspersecondover thechannelwhere� is arbitrarily small. It is not possible to transmit at

anaveragerategreaterthan
C
H

.

Theconversepartof thetheorem,that
C
H

cannotbeexceeded,may beproved bynotingthattheentropy

of thechannelinputper secondis equalto thatof thesource,sincethetransmitter must benon-singular, and
also thisentropy cannotexceedthechannelcapacity. HenceH � � C andthenumberof symbolspersecond� H � � H � C � H.

The first part of the theoremwill be proved in two diff erent ways. The first method is to consider the
set of all sequencesof N symbolsproducedby thesource.For N largewe candividethese into two groups,
onecontaining lessthan2

�
H � � � N membersand the secondcontaining lessthan2RN members(whereR is

the logarithm of thenumber of dif ferent symbols)and having a total probability lessthan � . AsN increases� and � approachzero. Thenumberof signals of duration T in thechannelis greaterthan2
�
C � � � T with �

smallwhenT is large. if we choose

T �
�

H
C

� � �
N

thentherewill be asufficient number of sequencesof channel symbols for the high probability groupwhen
N andT aresufficiently large(however small

�
) andalsosomeadditional ones. Thehigh probability group

is codedin an arbitrary one-to-oneway into this set. The remaining sequencesarerepresentedby larger
sequences, starting and endingwith oneof the sequencesnot usedfor the highprobability group. This
special sequenceacts as a start and stop signalfor a differentcode.In betweena sufficient time is allowed
to giveenoughdifferentsequencesfor all thelow probabilitymessages. Thiswill require

T1
�

�
R
C

� 	 �
N

where
	

is small.Themeanrateof transmission in messagesymbolspersecondwill thenbegreaterthan

� 1 � � � T

N
� � T1

N � � 1

�



� 1 � � � � H
C

� �  � � � R
C

� 	  � � 1

�
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As N increases� ,
�

and
	

approachzeroand therateapproaches
C
H

.

Anothermethodof performingthiscodingandthereby provingthetheoremcanbedescribedasfollows:
Arrangethe messagesof length N in orderof decreasing probability andsuppose their probabilitiesare
p1 � p2 � p3

� � � � pn. Let Ps
� ∑s� 1

1 pi ; that isPs is the cumulativeprobability up to, but not including, ps.
Wefirst encodeinto abinary system.Thebinarycodefor messages isobtainedby expandingPs asabinary
number. Theexpansion iscarriedout to ms places,wherems is the integersatisfying:

log2
1
ps

� ms � 1
�

log2
1
ps

�

Thus the messages of high probability arerepresentedby short codes and those of low probability by long
codes. From theseinequalities we have

1
2ms

� ps �
1

2ms � 1 �

Thecodefor Ps will differ fromall succeedingonesin oneor moreof its ms places,sinceall theremaining
Pi areat least 1

2ms largerandtheir binaryexpansionsthereforediffer in thefirst ms places.Consequentlyall
the codesare differentand it is possible to recover themessagefrom its code.If thechannelsequencesare
not alreadysequencesof binarydigits, they canbeascribedbinarynumbersin anarbitrary fashion andthe
binarycodethustranslatedinto signals suitable for the channel.

TheaveragenumberH � of binarydigits usedper symbol of original message is easily estimated. We
have

H � � 1
N ∑msps �

But,
1
N ∑ � log2

1
ps


ps � 1

N ∑msps �
1
N ∑ � 1

�
log2

1
ps


ps

andtherefore,

GN � H � � GN
� 1

N

As N increasesGN approachesH, theentropy of thesourceandH � approachesH.
We seefrom this that the inefficiency in coding, whenonly a finite delay of N symbolsis used, need

not be greater than 1
N plus the difference betweenthe true entropy H andthe entropy GN calculatedfor

sequencesof length N. Theper centexcesstime neededover theidealis thereforelessthan

GN

H
� 1

HN
� 1 �

This method of encoding is substantially the sameas onefound independently by R. M. Fano.9 His
methodis to arrangethemessagesof length N in order of decreasing probability . Dividethis seriesinto two
groupsof asnearlyequalprobability aspossible. If the message is in the first group its first binarydigit
will be 0, otherwise1. The groupsaresimilarly divided into subsetsof nearly equalprobability andthe
particularsubsetdeterminesthe secondbinarydigit. This processis continueduntil eachsubset contains
only onemessage.It is easily seenthatapartfromminordifferences(generally in thelast digit) thisamounts
to thesamethingasthearithmeticprocessdescribedabove.

10. DISCUSSIONAND EXAMPL ES

In orderto obtain themaximumpower transfer fromagenerator to a load,a transformermust in generalbe
introducedso that the generator as seenfrom theloadhastheloadresistance.Thesituation hereis roughly
analogous. Thetransducerwhich doestheencoding should match the sourceto the channelin a statistical
sense.Thesourceas seenfrom thechannelthroughthetransducershould havethesamestatisticalstructure

9TechnicalReportNo. 65,TheResearchLaboratoryof Electronics, M.I.T., March17, 1949.
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asthe sourcewhich maximizesthe entropy in the channel. Thecontentof Theorem9 is that, althoughan
exactmatch is not in generalpossible, we canapproximate it asclosely as desired. Theratio of the actual
rateof transmission to the capacityC maybe called theefficiency of thecoding system. This is of course
equalto theratio of theactualentropy of the channelsymbols to themaximumpossible entropy.

In general,ideal or nearlyideal encodingrequiresa long delayin the transmitterand receiver. In the
noiseless case whichwe havebeenconsidering,the main function of thisdelay is to allow reasonably good
matchingof probabilitiesto correspondinglengthsof sequences. With a goodcodethe logarithmof the
reciprocalprobability ofa longmessagemust beproportionalto thedurationof thecorrespondingsignal,in
fact ��� logp� 1

T
� C

���
must besmall for all but asmall fraction of thelongmessages.

If asourcecanproduceonly oneparticularmessageits entropy is zero,andno channelis required.For
example,a computingmachineset up to calculatethesuccessive digits of � producesa definite sequence
with no chanceelement. No channel is requiredto “ transmit” this to another point. One could construct a
secondmachineto computethesamesequenceat thepoint. However, thismay beimpractical. In suchacase
we canchoose to ignoresomeor all of the statistical knowledgewehaveof thesource.We mightconsider
the digits of � to bea randomsequencein thatwe construct a systemcapable of sending any sequenceof
digits. In a similar way we maychoose to use someof our statistical knowledgeof English in constructing
a code, but not all of it. In sucha casewe consider the sourcewith the maximum entropy subject to the
statisticalconditions we wish to retain. The entropy of this sourcedetermines the channel capacity which
is necessary andsufficient. In the � example theonly information retainedis thatall the digits arechosen
from theset 0 � 1 � � � � � 9. In the case of English onemight wish to use the statistical saving possible dueto
letter frequencies, but nothingelse. Themaximumentropy sourceis thenthefirst approximationto English
anditsentropy determinestherequiredchannelcapacity.

As a simple example of some of these results consider a sourcewhich producesa sequenceof letters
chosenfromamongA, B,C, D with probabilities 1

2, 1
4, 1

8, 1
8, successivesymbolsbeingchosenindependently.

We have

H � �
�

1
2 log 1

2
� 1

4 log 1
4

� 2
8 log 1

8 �� 7
4 bits per symbol�

Thus we canapproximatea coding systemto encode messages from this sourceinto binary digits with an
averageof 7

4 binary digit persymbol. In this casewecanactually achievethelimiting valueby thefollowing
code(obtainedby themethodof thesecondproofof Theorem9):

A 0
B 10
C 110
D 111

Theaveragenumberof binarydigitsusedin encodingasequenceof N symbolswill be

N
�

1
2 � 1

� 1
4 � 2

� 2
8 � 3� � 7

4N �
It is easilyseenthat the binary digits 0, 1 have probabilities 1

2, 1
2 so the H for thecodedsequencesis one

bit per symbol. Since,on the average,we have 7
4 binarysymbolsper original letter, the entropiesona time

basisare thesame.Themaximumpossible entropy for theoriginal set is log4 � 2, occurringwhenA, B, C,
D haveprobabilities 1

4, 1
4, 1

4, 1
4. Hencetherelative entropy is 7

8. We cantranslate thebinarysequencesinto
theoriginalsetof symbolsona two-to-onebasisby thefollowingtable:

00 A�
01 B�
10 C�
11 D �
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Thisdoubleprocessthenencodestheoriginalmessageinto thesamesymbolsbut with anaveragecompres-
sion ratio 7

8.
Asasecondexample considerasourcewhich producesasequenceof A’sandB’swith probability p for

A andq for B. If p � q we have

H � � logpp � 1 � p� 1 � p

� � plogp � 1 � p�
�
1 � p� � p

�� plog
e
p

�

In sucha case onecanconstructa fairly goodcodingof the messageona 0, 1channelby sendinga special
sequence,say 0000,for theinfrequent symbolA andthenasequenceindicatingthenumberof B’s following
it. This could be indicatedby the binary representation with all numbers containing the special sequence
deleted. All numbersupto 16arerepresentedasusual; 16 is represented by the next binarynumberafter16
which doesnotcontain fourzeros, namely 17 � 10001,etc.

It canbeshown thatas p � 0 thecodingapproachesidealprovidedthe length of thespecial sequenceis
properly adjusted.

PART II: THE DISCRETECHANNEL WITH NOISE

11. REPRESENTATION OF A NOISY DISCRETE CHANNEL

We now consider the case wherethe signal is perturbedby noise during transmission or at oneor the other
of the terminals. This meansthat the received signal is not necessarilythe sameas that sent out by the
transmitter. Two casesmaybe distinguished. If a particulartransmitted signal always producesthe same
received signal,i.e.,thereceived signal isadefinitefunctionof thetransmittedsignal,thentheeffectmaybe
calleddistortion. If this functionhasaninverse — no two transmittedsignalsproducingthesamereceived
signal — distortion may becorrected, at least in principle, by merely performing the inverse functional
operationon thereceived signal.

Thecase of interest hereis that in which the signaldoesnot always undergo thesamechangein trans-
mission. Inthiscasewemayassume thereceived signalE to be afunction of the transmittedsignal Sanda
secondvariable, thenoise N.

E � f � S� N �
Thenoise is consideredto bea chancevariable just as themessagewas above. In generalit maybe repre-
sentedby a suitable stochastic process. Themost generaltypeof noisy discrete channelwe shall consider
is a generalizationof thefinite statenoise-freechanneldescribedpreviously. We assumea finite numberof
statesand a setof probabilities

p� � i � � � j � �
This is theprobability , if thechannel is in state � andsymbol i is transmitted, thatsymbol j will bereceived
andthechannelleft in state

�
. Thus � and

�
rangeover thepossible states, i over the possible transmitted

signalsand j over thepossiblereceivedsignals.In thecasewheresuccessivesymbolsareindependentlyper-
turbedby the noise thereis only onestate,and the channel is describedby theset of transition probabilities
pi � j � , theprobability of transmittedsymbol i beingreceived as j.

If anoisy channelis fedby asourcethereare two statisticalprocessesat work: thesourceandthenoise.
Thusthereare a numberof entropiesthat canbecalculated. First thereis the entropy H � x� of the source
or of the input to the channel(these will be equalif the transmitter is non-singular). The entropy of the
outputof thechannel,i.e., thereceived signal,will bedenotedby H � y� . In thenoiseless caseH � y� � H � x� .
Thejoint entropy of inputandoutputwill beH � xy� . Finally thereare two conditional entropiesHx � y� and
Hy � x� , theentropy of theoutputwhentheinputis known andconversely. Amongthese quantitieswe have
therelations

H � x � y� � H � x� �
Hx � y� � H � y� �

Hy � x� �
All of these entropiescanbemeasuredona per-secondor a per-symbolbasis.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the original message or the transmitted
signal with certainty by any operationon the received signal E. There are,however, ways of transmitting
the informationwhichareoptimal in combatingnoise. This is theproblemwhich we now consider.

Suppose therearetwo possible symbols0 and1, and we aretransmitting at a rateof 1000symbolsper
second with probabilities p0

� p1
� 1

2. Thusour sourceis producing information at the rate of 1000bits
per second. During transmission the noise introduceserrorsso that, on the average,1 in 100is received
incorrectly (a 0 as 1, or 1 as0). What is therate of transmission of information? Certainly lessthan1000
bits per secondsinceabout 1% of the received symbolsare incorrect. Our first impulse might be to say
the rate is 990bits per second,merely subtracting the expectednumberof errors. This is not satisfactory
sinceit fails to take into accountthe recipient’s lackof knowledgeof wheretheerrorsoccur. We maycarry
it to anextremecase and suppose thenoise so greatthat thereceived symbolsare entirely independentof
thetransmittedsymbols. Theprobability of receiving 1 is 1

2 whatever was transmittedand similarly for 0.
Thenabouthalf of thereceived symbolsarecorrectdueto chancealone,andwewouldbegiving thesystem
credit for transmitting 500 bits per secondwhile actually no information isbeing transmittedat all. Equally
“good” transmission would be obtainedby dispensing with thechannelentirely and flipping a coin at the
receiving point.

Evidentlythepropercorrectionto apply to theamountof informationtransmittedis theamountof this
informationwhich is missingin thereceived signal,or alternatively theuncertaintywhenwe have received
a signalof whatwasactually sent. From our previousdiscussion of entropy as a measureof uncertainty it
seemsreasonableto usetheconditionalentropy of themessage,knowing thereceived signal,asa measure
of this missing information. This is indeedthe proper definition, aswe shall seelater. Following this idea
the rate of actual transmission, R, would be obtainedby subtracting from the rate of production (i.e., the
entropy of thesource)the averagerateof conditionalentropy.

R � H � x� � Hy � x�

Theconditionalentropy Hy � x� will, for convenience,becalledtheequivocation. It measures the average
ambiguityof thereceived signal.

In theexampleconsideredabove, if a 0 is received thea posteriori probability that a 0 was transmitted
is .99,andthata 1 wastransmittedis .01.Thesefiguresarereversedif a 1 is received. Hence

Hy � x� � � � � 99log � 99
�

0 � 01log0� 01�
� � 081bits/symbol

or 81bitsper second.We maysay thatthesystemis transmitting at a rate1000 � 81 � 919bits per second.
In theextremecasewherea 0 is equallylikely to bereceived asa0 or 1 andsimilarly for 1, thea posteriori
probabilities are 1

2, 1
2 and

Hy � x� � � � 1
2 log 1

2
� 1

2 log 1
2 �� 1 bit per symbol

or 1000bits per second.Therateof transmission is then0 as it should be.
Thefollowing theoremgivesadirectintuitiveinterpretation of theequivocationandalsoserves to justify

it as the unique appropriatemeasure. We consider a communication systemand anobserver (or auxiliary
device)who canseeboth what is sent andwhat isrecovered(with errorsdue to noise).This observer notes
theerrorsin therecoveredmessageandtransmitsdata tothereceiving pointover a “correctionchannel”to
enablethereceiver to correcttheerrors.Thesituationis indicatedschematicallyin Fig. 8.

Theorem10: If the correctionchannelhas a capacityequalto Hy � x� it is possible to so encodethe
correctiondataas to sendit over this channelandcorrectall but anarbitrarilysmall fraction � of theerrors.
This is not possible if thechannel capacity is lessthanHy � x� .
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M � M

CORRECTION DATA

Fig. 8—Schematic diagram of acorrection system.

Roughly then,Hy � x� is the amountof additionalinformationthat must be suppliedper secondat the
receiving point to correctthereceived message.

To prove the first part, considerlong sequencesof received messageM � and corresponding original
message M. There will be logarithmically THy � x� of the M’s which could reasonablyhave producedeach
M � . ThuswehaveTHy � x� binarydigits to sendeachT seconds. Thiscanbedonewith � frequency of errors
ona channelof capacity Hy � x� .

Thesecondpartcanbeproved bynoting,first, thatfor any discrete chancevariablesx, y, z

Hy � x � z� � Hy � x� �
Theleft-handsidecanbeexpandedto give

Hy � z� �
Hyz � x� � Hy � x�

Hyz � x� � Hy � x� � Hy � z� � Hy � x� � H � z� �
If weidentify x astheoutputof thesource,y asthereceivedsignalandzasthesignalsentover thecorrection
channel, thentheright-handsideistheequivocationlesstherateof transmission over thecorrectionchannel.
If the capacityof this channel is lessthan the equivocation the right-hand side will begreaterthanzeroand
Hyz � x� � 0. But this is theuncertaintyof whatwas sent,knowing boththereceived signalandthecorrection
signal. If this isgreater thanzerothefrequency of errorscannotbearbitrarily small.

Example:

Supposetheerrorsoccurat randomin a sequenceof binarydigits: probability p thata digit is wrong
andq � 1 � p that it is right. Theseerrors canbe correctedif their position is known. Thus the
correctionchannelneedonly sendinformationas to these positions. This amountsto transmitting
from a sourcewhich producesbinary digits with probability p for 1 (incorrect)and q for 0 (correct).
This requiresa channelof capacity

� � plogp
�

qlogq�
which is the equivocation of the original system.

Therate of transmissionR canbewritten in two other formsdue to the identitiesnoted above. We have

R � H � x� � Hy � x�
� H � y� � Hx � y�
� H � x� �

H � y� � H � x � y� �
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Thefirst definingexpressionhasalreadybeeninterpreted as theamountof informationsentlesstheuncer-
taintyof whatwas sent.Thesecondmeasurestheamountreceived lessthepartof thiswhichisdueto noise.
Thethird is the sum ofthe two amounts lessthejoint entropy andthereforein a sense is the numberof bits
per secondcommonto thetwo. Thusall threeexpressionshave acertain intuitivesignificance.

ThecapacityC of a noisy channelshould be themaximumpossible rate of transmission, i.e., the rate
whenthesourceis properly matchedto the channel. We thereforedefinethe channelcapacity by

C � Max
�
H � x� � Hy � x� �

wherethemaximumis with respect to all possible informationsourcesusedasinput to thechannel.If the
channelisnoiseless, Hy � x� � 0. Thedefinition isthen equivalent to thatalready givenfor anoiselesschannel
sincethemaximumentropy for thechannelis its capacity.

13. THE FUNDAMENTAL THEOREM FOR A DISCRETE CHANNEL WITH NOISE

It mayseemsurprising that we should definea definite capacity C for a noisychannelsincewe cannever
send certain informationin sucha case. It is clear, however, thatby sending the information in a redundant
form the probability of errorscanbe reduced. For example,by repeating the message many timesand by a
statisticalstudyof thedifferentreceived versionsof themessagetheprobabilityof errorscouldbemadevery
small. Onewould expect,however, that to make this probability of errorsapproachzero,the redundancy
of the encodingmust increase indefinitely, and the rate of transmission thereforeapproachzero.This is by
no meanstrue. If it were,therewould not bea very well definedcapacity, but only a capacityfor a given
frequency of errors, or a given equivocation; the capacity going down asthe error requirements are made
morestringent. Actually the capacityC definedabovehasa very definitesignificance.It ispossible to send
information at therateC throughthe channelwith assmall a frequencyof errorsor equivocation asdesired
by properencoding. This statementis not truefor any rate greater thanC. If an attemptismadeto transmit
atahigherratethanC, say C

�
R1, thentherewill necessarilybe anequivocationequalto or greaterthanthe

excessR1. Nature takespayment by requiring just thatmuchuncertainty, so that we arenot actually getting
any morethanC throughcorrectly.

Thesituation is indicatedin Fig. 9. Therate of information into thechannelis plotted horizontally and
theequivocationvertically. Any point above theheavy line in theshadedregion canbeattainedandthose
below cannot.Thepointson theline cannotin generalbe attained,but therewill usually betwo pointson
the line that can.

Theseresults arethemainjustification for thedefinition of C and will now beproved.

Theorem11: Let adiscretechannelhavethecapacityC andadiscretesourcethe entropy per secondH.
If H � C thereexistsacodingsystemsuchthat theoutput of thesourcecanbe transmittedover thechannel
with anarbitrarily small frequency of errors (or an arbitrarily small equivocation). If H � C it is possible
to encodethesourcesothattheequivocationis lessthanH � C

�
� where� is arbitrarily small.Thereis no

methodof encodingwhich givesanequivocation lessthanH � C.

The method of proving the first part of this theorem is not by exhibiting a coding method having the
desiredproperties,but by showing that such a code must exist in a certaingroup of codes. In factwe will

ATTAINABLE
REGION

C H � x�

Hy � x�

SLO
PE

=
1.

0

Fig. 9—The equivocation possible for agiveninputentropy to achannel.
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averagethe frequency of errorsover this groupandshow that this averagecanbemadelessthan � . If the
average of a setof numbers is lessthan � theremustexist at leastonein theset which is lessthan � . This
will establish the desiredresult.

ThecapacityC of anoisychannelhasbeendefinedas

C � Max
�
H � x� � Hy � x� �

wherex is the inputandy the output. Themaximization isover all sourceswhich mightbe usedasinputto
the channel.

Let S0 bea sourcewhich achieves themaximumcapacityC. If this maximum is not actually achieved
by any sourcelet S0 bea sourcewhich approximates to giving the maximumrate. Suppose S0 is usedas
inputto thechannel.Weconsider thepossibletransmittedandreceived sequencesof a longdurationT. The
following will be true:

1. Thetransmittedsequencesfall into two classes, a high probabilitygroupwith about2TH
�
x� members

and theremaining sequencesof smalltotal probability .
2. Similarly the received sequenceshave a high probability set of about 2TH

�
y� membersand a low

probability setof remainingsequences.
3. Eachhigh probabilityoutputcouldbe producedby about2THy

�
x� inputs. Theprobabilityof all other

caseshasa smalltotal probability .
All the � ’s and � ’s implied by thewords“small” and“about” in these statements approachzeroas we

allow T to increaseandS0 to approachthemaximizing source.
The situation is summarized in Fig. 10 where the input sequencesare points on the left and output

sequencespointson the right. The fan of cross linesrepresents the rangeof possible causes for a typical
output.

M

E

2H
�
x� T

HIGH PROBABI L ITY
MESSAGES

2H
�
y� T

HIGH PROBABI L ITY
RECEIVED SIGNAL S

2Hy
�
x� T

REASONABL E CAUSES
FOR EACH E

2Hx
�
y� T

REASONABL E EFFECTS
FOR EACH M

Fig. 10—Schematic representation of therelationsbetweeninputs andoutputs in achannel.

Now suppose we have another sourceproducing informationat rate R with R � C. In theperiod T this
sourcewill have 2TR high probability messages. We wish to associatethesewith a selection of the possible
channelinputsin such a way as to get a small frequency of errors. We will set up this association in all
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possible ways(using, however, only the highprobabilitygroupof inputsas determinedby thesourceS0)
andaveragethe frequency of errors for this large classof possible coding systems. This is the sameas
calculating thefrequency of errorsfor a randomassociation of themessagesandchannelinputsof duration
T. Suppose aparticular outputy1 is observed. What is the probability of more thanone message in the set
of possiblecausesof y1? There are2TR messagesdistributedat randomin 2TH

�
x� points. Theprobability of

a particularpoint beinga messageis thus
2T

�
R� H

�
x� � �

Theprobability thatnoneof thepointsin thefan isamessage(apartfrom theactualoriginatingmessage)is

P � � 1 � 2T
�
R� H

�
x� � � 2THy � x� �

Now R � H � x� � Hy � x� soR � H � x� � � Hy � x� � � with � positive. Consequently

P � � 1 � 2� THy
�
x� � T � � 2THy � x�

approaches(asT � ∞)
1 � 2 � T � �

Hencetheprobability of anerror approaches zeroand thefirst partof the theoremisproved.
Thesecondpartof the theoremis easily shown by noting thatwe could merely sendC bits per second

from the source,completelyneglecting the remainderof the informationgenerated.At the receiver the
neglectedpartgivesan equivocationH � x� � C and the part transmittedneedonly add � . This limit canalso
beattainedin many otherways, aswill beshown whenwe consider thecontinuouscase.

Thelaststatement of thetheoremis asimple consequenceof our definition of C. Supposewecanencode
a sourcewith H � x� � C

�
a in sucha way as toobtainan equivocationHy � x� � a � � with � positive. Then

R � H � x� � C
�

a and
H � x� � Hy � x� � C

�
�

with � positive. Thiscontradictsthe definition of C asthemaximumof H � x� � Hy � x� .
Actually morehasbeenproved thanwas stated in the theorem.If the averageof a set of numbersis

within � of of their maximum,a fraction of at most � � canbemorethan � � below themaximum.Since � is
arbitrarily smallwe cansaythat almost all thesystemsarearbitrarily close to the ideal.

14. DISCUSSION

Thedemonstration of Theorem11, while not a pureexistenceproof, has someof the deficiencies of such
proofs. An attempt to obtain a goodapproximation to idealcoding byfollowing themethodof theproof is
generally impractical.In fact,apart from somerather trivial casesand certainlimiting situations, noexplicit
description of a series of approximationto the ideal hasbeenfound. Probablythis is no accidentbut is
related to thedifficulty of givinganexplicit constructionfor agoodapproximationto a randomsequence.

An approximation to theidealwould have theproperty that if thesignal is altered in a reasonable way
by the noise,the original canstill be recovered. In other words the alteration will not in general bring it
closer to anotherreasonablesignal thantheoriginal.This isaccomplishedat thecost of acertainamountof
redundancy in thecoding. Theredundancy must be introducedin the properway to combatthe particular
noise structureinvolved. However, any redundancy in the sourcewill usually help if it is utilized at the
receiving point. In particular, if the sourcealreadyhasa certainredundancy and noattemptis madeto
eliminateit in matchingto thechannel,this redundancy will helpcombatnoise. For example,in anoiseless
telegraphchannelonecould save about50%in time by properencodingof the messages. This is not done
andmost of theredundancy of English remainsin the channelsymbols. This hastheadvantage,however,
of allowing considerablenoisein thechannel.A sizablefractionof the letterscanbereceived incorrectly
and still reconstructedby the context. In factthis is probably not a bad approximation to the ideal in many
cases,sincethestatisticalstructureof English is ratherinvolved and thereasonableEnglishsequencesare
not too far (in thesense requiredfor the theorem)from a randomselection.
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As in the noiseless case adelay is generally required to approachthe idealencoding. It now hasthe
additional function of allowing a large sample of noise to affect the signal beforeany judgmentis made
at the receiving point as totheoriginal message.Increasingthesamplesizealways sharpensthepossible
statisticalassertions.

Thecontentof Theorem11anditsproofcanbeformulatedin a somewhatdif ferentway whichexhibits
the connectionwith thenoiselesscasemore clearly. Considerthepossiblesignals of duration T andsuppose
asubsetof themis selectedto be used.Letthosein thesubsetall beused with equalprobability, andsuppose
thereceiver is constructedto select,as theoriginalsignal,themostprobablecausefrom thesubset,whena
perturbedsignal is received. WedefineN � T � q� to bethemaximumnumberof signalswecanchoosefor the
subsetsuchthat theprobability of anincorrectinterpretation is lessthan or equal to q.

Theorem12: Lim
T � ∞

logN � T � q�
T

� C, whereC is the channelcapacity, providedthatq doesnotequal0 or

1.

In otherwords, no matter how we set out limits of reliability, we candistinguish reliably in time T
enoughmessagesto correspondto aboutCT bits, when T is sufficiently large.Theorem12canbecompared
with the definition of thecapacityof a noiselesschannel givenin Section 1.

15. EXAMPL E OF A DISCRETE CHANNEL AND ITS CAPACITY

A simple exampleof adiscrete channelis indicatedin Fig. 11.Therearethreepossiblesymbols. Thefirst is
never affectedby noise.Thesecondandthird eachhave probability p of coming throughundisturbed,and
q of being changed into the other of the pair. We have (letting � � � � plogp

�
qlogq� andP andQ bethe

p

p

q

q

TRANSMITTED
SYMBOLS

RECEIVED
SYMBOLS

Fig. 11—Example of adiscrete channel.

probabilities of using the first andsecondsymbols)

H � x� � � PlogP � 2QlogQ

Hy � x� � 2Q� �
Wewish to chooseP andQ in suchawayas tomaximizeH � x� � Hy � x� , subjectto the constraint P

�
2Q � 1.

Hencewe consider
U � � PlogP � 2QlogQ � 2Q�

� � � P �
2Q�

∂U
∂P

� � 1 � logP
� � � 0

∂U
∂Q

� � 2 � 2logQ � 2�
�

2
� � 0 �

Eliminating
�

logP � logQ
�

�

P � Qe
� � Q

�
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P �
�

� �
2

Q � 1
� �

2
�

The channel capacity is then

C � log
� �

2
� �

Notehow thischeckstheobviousvaluesin thecasesp � 1 and p � 1
2. In thefirst,

� � 1 andC � log3,
which is correct since the channel is then noiselesswith three possible symbols. If p � 1

2,
� � 2 and

C � log2. Here the secondand third symbols cannotbe distinguished at all and act together like one
symbol. The first symbol is usedwith probability P � 1

2 and the secondand third togetherwith probability
1
2. Thismaybedistributedbetweenthemin any desiredway andstill achievethe maximum capacity.

For intermediatevaluesof p the channel capacity will lie betweenlog2 and log3. The distinction
betweenthe secondandthird symbolsconveyssomeinformation but not asmuchasin the noiseless case.
Thefirst symbol is usedsomewhatmorefrequentlythantheothertwo becauseof its freedomfrom noise.

16. THE CHANNEL CAPACITY IN CERTAIN SPECIAL CASES

If the noise affects successive channel symbols independently it can be described by a set of transition
probabilities pi j . This is the probability , if symbol i is sent, that j will bereceived. Themaximumchannel
rate isthengiven by themaximum of

� ∑
i � j

Pi pi j log∑
i

Pi pi j
� ∑

i � j
Pi pi j logpi j

where we vary the Pi subjectto ∑Pi
� 1. This leadsby themethodof Lagrangeto the equations,

∑
j

ps j log
ps j

∑i Pi pi j

� � s � 1 � 2 � � � � �

Multiplying by Ps andsumming ons shows that � � C. Let the inverseof ps j (if it exists)be hst so that
∑shstps j

� � t j . Then:

∑
s� j

hstps j logps j � log∑
i

Pi pit
� C∑

s
hst �

Hence:

∑
i

Pi pit
� exp � � C∑

s
hst

� ∑
s� j

hstps j logps j

�
or,

Pi
� ∑

t
hit exp � � C∑

s
hst

� ∑
s� j

hstps j logps j

�
�

This is thesystemof equations for determiningthemaximizing valuesof Pi , with C to bedetermined so
that ∑Pi

� 1. Whenthis is doneC will be the channel capacity, and the Pi the proper probabilities for the
channelsymbolsto achievethiscapacity.

If eachinputsymbolhasthesameset of probabilitiesonthelinesemergingfrom it, andthesameis true
of eachoutputsymbol,thecapacitycanbeeasilycalculated.Examplesareshown in Fig. 12. In suchacase
Hx � y� is independentof thedistribution of probabilitieson theinput symbols, andis givenby � ∑ pi logpi

wherethe pi arethevaluesof thetransition probabilitiesfrom any inputsymbol. Thechannelcapacityis

Max � H � y� � Hx � y� � � MaxH � y� � ∑ pi logpi �
Themaximum ofH � y� is clearlylogmwherem is thenumberof outputsymbols, sinceit ispossibleto make
themall equally probableby making theinputsymbolsequally probable. Thechannelcapacity is therefore

C � logm
� ∑ pi logpi �
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Fig. 12—Examplesof discretechannelswith thesametransitionprobabilitiesfor eachinput andfor eachoutput.

In Fig. 12ait would be
C � log4 � log2 � log2�

Thiscould beachieved by usingonly the 1st and 3dsymbols. In Fig. 12b

C � log4 � 2
3 log3 � 1

3 log6
� log4 � log3 � 1

3 log2

� log 1
32

5
3 �

In Fig. 12cwehave

C � log3 � 1
2 log2 � 1

3 log3 � 1
6 log6

� log
3

2
1
2 3

1
3 6

1
6

�

Suppose thesymbolsfall into severalgroupssuch that the noise never causes a symbol in onegroupto
be mistakenfor a symbol in anothergroup. Let the capacity for thenth groupbeCn (in bits per second)
whenwe use only thesymbolsin this group. Thenit is easily shown that, for best use of the entire set, the
total probability Pn of all symbols in thenth groupshould be

Pn
� 2Cn

∑2Cn
�

Within a group the probability is distributedjust as it would be if thesewerethe only symbols being used.
Thechannelcapacity is

C � log∑2Cn �
17. AN EXAMPL E OF EFFICIENT CODING

Thefollowingexample, althoughsomewhatunrealistic, isacasein whichexactmatchingto anoisy channel
ispossible. Thereare two channelsymbols, 0 and 1,andthenoiseaffects themin blocksof sevensymbols.
A block of seven is either transmitted withouterror, or exactly onesymbol of thesevenis incorrect.These
eight possibilities areequally lik ely. We have

C � Max � H � y� � Hx � y� �
� 1

7 � 7 � 8
8 log 1

8 �
� 4

7 bits/symbol�
An efficient code, allowing completecorrection of errors and transmitting at the rateC, is the following
(foundby a methoddueto R. Hamming):
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Let a block of sevensymbolsbe X1 � X2 � � � � � X7. Of these X3, X5, X6 andX7 aremessagesymbolsand
chosenarbitrarily by thesource.Theother threeare redundantandcalculated as follows:

X4 is chosento make � � X4
�

X5
�

X6
�

X7 even
X2 “ “ “ “

� � X2
�

X3
�

X6
�

X7 “
X1 “ “ “ “ � � X1

�
X3

�
X5

�
X7 “

Whena block of seven is received � � �
and � arecalculatedand if evencalledzero,if oddcalledone.The

binarynumber�
�

� thengivesthesubscript of theXi thatis incorrect(if 0 therewasnoerror).

APPENDIX 1

THE GROWTH OF THE NUMBER OF BLOCKS OF SYMBOLS WITH A FINIT E STATE CONDITION

Let Ni � L � bethenumberof blocksof symbolsof length L endingin state i. Then wehave

Nj � L � � ∑
i � s

Ni
�
L � b

�
s�

i j �
whereb1

i j � b2
i j � � � � � bm

i j arethelength of thesymbolswhichmaybe chosenin state i andleadto statej. These
arelineardifferenceequationsandthe behavior asL � ∞ must beof the type

Nj
� A jW

L �
Substituting in thediff erenceequation

A jW
L � ∑

i � s
AiW

L � b � s�
i j

or

A j
� ∑

i � s
AiW � b� s�

i j

∑
i

� ∑
s

W � b � s�
i j � � i j


Ai

� 0 �

For this to bepossible thedeterminant

D � W � � � ai j
� � ��� ∑

s
W � b� s�

i j � � i j

���

mustvanishandthisdeterminesW, which is, of course, thelargest realrootof D � 0.
Thequantity C is thengiven by

C � Lim
L � ∞

log∑A jWL

L
� logW

andwe also note thatthesamegrowth properties result if we require that all blocksstart in the same(arbi-
trarily chosen) state.

APPENDIX 2

DERIVATION OF H � � ∑ pi logpi

Let H � 1
n

� 1
n

� � � � � 1
n

 � A � n� . From condition (3) we candecompose achoicefrom sm equally lik ely possi-

bilities into aseriesof m choicesfrom sequally lik ely possibilities and obtain

A � sm � � mA� s� �
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Similarly
A � tn � � nA� t � �

We canchoosen arbitrarily large andfind an m to satisfy

sm � tn � s
�
m� 1� �

Thus, taking logarithmsand dividing bynlogs,

m
n

� log t
log s

� m
n

� 1
n

or
��� m
n

�
log t
log s

��� � �

where� isarbitrarily small. Now from themonotonic property of A � n� ,
A � sm � � A � tn � � A � sm� 1 �

mA� s� � nA� t � � � m �
1� A � s� �

Hence,dividing bynA� s� ,
m
n

� A � t �
A � s� � m

n
� 1

n
or

��� m
n

�
A � t �
A � s�

��� � �

��� A � t �
A � s� �

logt
logs

��� � 2� A � t � � K logt

whereK must bepositive to satisfy(2).

Now suppose we have achoicefrom n possibilities with commeasurable probabilities pi
� ni

∑ni
where

the ni areintegers. We canbreakdown a choicefrom ∑ni possibilities into a choice from n possibilities
with probabilities p1 � � � � � pn andthen,if the ith waschosen,achoicefrom ni with equal probabilities. Using
condition (3) again, weequate the total choicefrom ∑ni ascomputedby two methods

K log∑ni
� H � p1 � � � � � pn � �

K∑ pi logni �
Hence

H � K � ∑ pi log∑ni � ∑ pi logni

�
� � K∑ pi log

ni

∑ni

� � K∑ pi logpi �

If the pi areincommeasurable, they may beapproximated by rationals andthesameexpression must hold
by ourcontinuity assumption. Thusthe expressionholdsin general. Thechoiceof coefficient K is a matter
of convenienceandamounts to thechoiceof aunit of measure.

APPENDIX 3

THEOREMS ON ERGODIC SOURCES

If it is possible to gofrom any statewith P � 0 to any other alongapathof probability p � 0, the system is
ergodic and the stronglaw of largenumberscanbeapplied. Thusthe numberof timesa givenpath pi j in
the network is traversed in a longsequenceof length N is aboutproportionalto theprobability ofbeingat
i, say Pi , and thenchoosing thispath, Pi pi j N. If N is large enoughtheprobabilityof percentageerror � � in
this is lessthan � sothat for all but asetof small probability theactual numbers lie within the limits

� Pi pi j � � � N �
Hencenearlyall sequenceshave aprobability p given by

p � ∏ p
�
Pi pi j � � � N

i j
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and
logp

N
is limited by

logp
N

� ∑ � Pi pi j � � � logpi j

or ��� logp
N

� ∑Pi pi j logpi j

��� � � �
ThisprovesTheorem3.

Theorem4 follows immediately from this on calculatingupperand lower boundsfor n � q� based on the
possible rangeof values ofp in Theorem3.

In the mixed(notergodic) case if
L � ∑ piLi

andtheentropies ofthe componentsareH1 � H2 � � � � � Hn wehave the

Theorem: Lim
N � ∞

logn
�
q�

N
� 	 � q� is adecreasing stepfunction,

	 � q� � Hs in the interval
s� 1

∑
1

� i � q �
s

∑
1

� i �

To prove Theorems5 and 6 first note that FN is monotonicdecreasing because increasing N addsa
subscript to a conditional entropy. A simple substitution for pBi � Sj � in thedefinition of FN showsthat

FN
� NGN � � N � 1� GN � 1

and summing this for all N givesGN
� 1

N ∑Fn. HenceGN � FN andGN monotonic decreasing. Also they

mustapproachthesamelimit. By usingTheorem3 we seethat Lim
N � ∞

GN
� H.

APPENDIX 4

MAXIMIZ ING THE RATE FOR A SYSTEM OF CONSTRAINT S

Suppose we have aset of constraints on sequencesof symbolsthat is of the finite state type andcanbe

represented thereforeby a lineargraph. Let
� �

s�
i j be the lengths of the varioussymbolsthat canoccur in

passing from state i to state j. What distribution of probabilities Pi for the differentstates and p
�
s�

i j for
choosing symbol s in statei andgoing to state j maximizesthe rate of generating informationunderthese
constraints? Theconstraintsdefinea discrete channeland the maximum rate must belessthanor equalto
thecapacityC of this channel, sinceif all blocksof large length wereequally likely, this rate would result,
and if possiblethiswould bebest.Wewill show that this ratecanbeachieved by proper choiceof thePi and

p
�
s�

i j .
Therate in question is

� ∑Pi p
�
s�

i j logp
�
s�

i j

∑Pi p
�
s�

i j
� �

s�
i j

� N
M

�

Let
�

i j
� ∑s

� �
s�

i j . Evidently for amaximump
�
s�

i j
� kexp

� �
s�

i j . Theconstraintsonmaximization are∑Pi
�

1, ∑ j pi j
� 1, ∑Pi � pi j � � i j � � 0. Hencewemaximize

U � � ∑Pi pi j logpi j

∑Pi pi j
�

i j

� � ∑
i

Pi
� ∑ � i pi j

� ∑ �
jPi � pi j � � i j �

∂U
∂pi j

� �
MPi � 1 �

logpi j � �
NPi

�
i j

M2
� � � � i

� �
iPi

� 0 �
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Solving for pi j

pi j
� AiB jD � � i j �

Since

∑
j

pi j
� 1 � A� 1

i
� ∑

j
B jD � � i j

pi j
� B jD � � i j

∑sBsD � � is
�

The correct value of D is the capacityC andtheB j aresolutionsof

Bi
� ∑B jC � � i j

for then

pi j
� B j

Bi
C � � i j

∑Pi
B j

Bi
C � � i j � Pj

or

∑ Pi

Bi
C � � i j � Pj

B j
�

Sothat if
�

i satisfy

∑ � iC � � i j � � j

Pi
� Bi � i �

Both thesetsof equations for Bi and � i canbesatisfiedsinceC is suchthat

� C � � i j � � i j
� � 0 �

In this casethe rate is

�
∑Pi pi j log

B j
Bi

C � � i j

∑Pi pi j
�

i j

� C �
∑Pi pi j log

B j
Bi

∑Pi pi j
�

i j

but

∑Pi pi j � logB j � logBi � � ∑
j

Pj logB j � ∑Pi logBi
� 0

Hencetherate isC andasthiscouldneverbeexceededthisis themaximum,justifyingtheassumedsolution.
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PART III: MATHEMATICAL PRELIMINARIES

In this final installment of the paperwe consider the case wherethe signals or the messagesor both are
continuously variable,in contrast with thediscretenatureassumedheretofore.To a considerableextentthe
continuouscasecanbeobtainedthroughalimiting processfromthediscretecaseby dividing thecontinuum
of messagesandsignalsintoalargebut finitenumberof small regionsandcalculatingthevariousparameters
involvedonadiscretebasis.As thesizeof theregionsis decreasedtheseparametersin generalapproachas
limits thepropervaluesfor the continuouscase. Thereare,however, a few new effects thatappearandalso
a generalchangeof emphasisin thedirectionof specializationof thegeneralresultsto particularcases.

We will not attempt,in the continuouscase, to obtainour results with the greatest generality, or with
the extremerigor of puremathematics, since this would involve agreatdeal ofabstract measure theory
andwould obscurethe main threadof the analysis. A preliminary study, however, indicatesthat the theory
canbeformulatedin a completely axiomatic andrigorousmannerwhich includesboth thecontinuousand
discretecasesandmany others.Theoccasionallibertiestakenwith limiting processesin thepresentanalysis
canbejustifiedin all cases ofpracticalinterest.

18. SETS AND ENSEMBLES OF FUNCTIONS

We shall have to deal in the continuouscase with sets of functionsandensemblesof functions. A set of
functions, as the nameimplies, is merelya classor collection of functions, generallyof one variable, time.
It canbe specifiedby giving an explicit representation of the various functions in the set, or implicitly by
givinga property which functionsin the setpossessandothersdonot. Someexamplesare:

1. Thesetof functions:
f � � t � � sin� t � � � �

Eachparticularvalueof � determinesaparticular function in theset.

2. Thesetof all functionsof time containing nofrequenciesover W cycles per second.

3. Thesetof all functionslimited in bandto W and in amplitudeto A.

4. Thesetof all Englishspeechsignalsasfunctionsof time.

An ensemble of functions is a set of functions together with a probability measure whereby we may
determinetheprobability of a function in the sethaving certainproperties.1 For example with theset,

f � � t � � sin� t � � � �
we maygive aprobability distribution for � , P � � � . Theset thenbecomesan ensemble.

Somefurtherexamplesof ensembles offunctionsare:

1. A finite set of functions fk � t � (k � 1 � 2 � � � � � n) with theprobability of fk being pk.

2. A finite dimensionalfamily of functions

f � � 1 � � 2 � � � � � � n;t �
with a probability distribution onthe parameters� i :

p � � 1 � � � � � � n � �
For examplewe could consider the ensembledefinedby

f � a1 � � � � � an � � 1 � � � � � � n;t � � n

∑
i � 1

ai sini � � t
� � i �

with the amplitudesai distributed normally andindependently, andthephases � i distributeduniformly
(from 0 to 2� ) and independently.

1In mathematical terminology thefunctionsbelongto ameasurespacewhose total measureisunity.
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3. Theensemble

f � ai � t � � � ∞

∑
n� � ∞

an
sin � � 2Wt � n�

� � 2Wt � n�
with theai normaland independent all with thesamestandard deviation � N. This isa representation
of “white” noise, bandlimited to thebandfrom 0 toW cyclesper secondand with averagepowerN.2

4. Let pointsbe distributedon the t axisaccordingto a Poissondistribution. At eachselectedpoint the
function f � t � is placedandthedifferentfunctionsadded,giving theensemble

∞

∑
k� � ∞

f � t �
tk �

wherethe tk arethepointsof thePoisson distribution. This ensemble canbeconsidered asa typeof
impulseor shot noisewhereall the impulsesare identical.

5. Thesetof Englishspeechfunctionswith theprobabilitymeasuregivenby thefrequency of occurrence
in ordinaryuse.

An ensembleof functions f � � t � is stationary if thesameensembleresultswhenall functionsareshifted
any fixed amountin time. Theensemble

f � � t � � sin� t � � �
is stationary if � is distributeduniformly from 0 to 2� . If we shift eachfunctionby t1 weobtain

f � � t �
t1 � � sin� t �

t1
� � �

� sin� t � 	 �
with

	
distributed uniformly from 0 to 2� . Each function haschangedbut the ensemble as a whole is

invariantunderthetranslation. Theotherexamples given abovearealso stationary.
An ensemble is ergodic if it is stationary, and there is no subset of the functions in the set with a

probability diff erent from 0 and 1which is stationary. Theensemble

sin� t � � �
is ergodic.No subset of these functionsof probability

�� 0 � 1 is transformedinto itself underall ti me trans-
lations. On theotherhandtheensemble

asin� t � � �
with a distributed normally and � uniform is stationarybut not ergodic. Thesubset of these functionswith
a between0 and 1for example is stationary.

Of the examples given, 3 and4 areergodic, and5 may perhapsbe considered so. If an ensemble is
ergodicwe may say roughly that eachfunction in the set is typical of the ensemble. More precisely it is
known thatwith anergodicensemblean average ofany statistic over theensembleis equal(with probability
1) to an averageover the time translationsof a particular function of the set.3 Roughly speaking,each
functioncanbeexpected,as time progresses, to go through,with theproperfrequency, all theconvolutions
of any of thefunctionsin theset.

2This representationcanbe used asa definition of band limited white noise. It hascertainadvantagesin that it involves fewer
limiting operationsthan do definitions that have beenused in the past. The name “white noise,” alreadyfirmly entrenchedin the
literature, is perhapssomewhat unfortunate. In opticswhite light meanseither any continuousspectrumas contrasted with a point
spectrum, or aspectrum which is flat with wavelength(which is not thesame as aspectrumflat with frequency).

3This is the famousergodic theoremor ratheroneaspectof this theoremwhich was proved in somewhat different formulations
by Birkoff, von Neumann, and Koopman, and subsequentlygeneralizedby Wiener, Hopf, Hurewicz and others. The literatureon
ergodic theory is quite extensive and the readeris referredto the papersof these writers for precise andgeneralformulations; e.g.,
E. Hopf, “Ergodentheorie,” ErgebnissederMathematikundihrer Grenzgebiete, v. 5; “On Causality StatisticsandProbability,” Journal
of MathematicsandPhysics, v. XIII, No. 1, 1934;N. Wiener, “The ErgodicTheorem,” Duke MathematicalJournal, v. 5, 1939.
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Just aswemayperformvariousoperationsonnumbersor functionsto obtain new numbersor functions,
we can performoperationson ensembles to obtain new ensembles. Suppose, for example, we have an
ensemble of functions f � � t � andan operator T which gives for eachfunction f � � t � a resulting function
g� � t � :

g� � t � � T f � � t � �
Probability measureisdefined for thesetg� � t � bymeansof thatfor theset f � � t � . Theprobability of acertain
subsetof theg� � t � functionsisequalto thatof thesubsetof the f � � t � functionswhich producemembersof
the givensubset of g functionsundertheoperation T. Physically this correspondsto passing the ensemble
throughsome device, for example, a filter, a rectifier or a modulator. The outputfunctionsof the device
form theensembleg� � t � .

A deviceor operator T will becalledinvariantif shifting theinputmerelyshifts theoutput,i.e.,if

g� � t � � T f � � t �

implies
g� � t �

t1 � � T f � � t �
t1 �

for all f � � t � andall t1. It is easilyshown (seeAppendix 5 that if T is invariantand the inputensemble is
stationarythenthe output ensemble is stationary. Likewise if the input is ergodic the outputwill also be
ergodic.

A filter or a rectifier is invariantunderall ti me translations. Theoperation of modulationisnotsincethe
carrier phase gives a certain time structure. However, modulation is invariant underall translationswhich
aremultiplesof theperiod of thecarrier.

Wienerhas pointed out the intimate relation betweenthe invarianceof physical devices undertime
translationsandFourier theory.4 He has shown, in fact,that if a deviceis linearaswell as invariant Fourier
analysis is thenthe appropriatemathematicaltool for dealing with theproblem.

An ensemble of functionsis the appropriate mathematical representation of themessagesproducedby
a continuoussource(for example,speech),of thesignalsproducedby a transmitter, andof theperturbing
noise.Communication theory isproperly concerned,ashasbeenemphasizedby Wiener, not with operations
on particularfunctions, but with operationsonensemblesof functions. A communicationsystemisdesigned
not for a particularspeechfunctionandstill lessfor a sinewave, but for theensembleof speechfunctions.

19. BAND L IMIT ED ENSEMBLES OF FUNCTIONS

If a function of time f � t � is limited to the band from 0 to W cyclesper second it is completely determined
by giving its ordinatesat a seriesof discretepointsspaced 1

2W secondsapartin themannerindicatedby the
following result.5

Theorem13: Let f � t � contain nofrequenciesover W. Then

f � t � � ∞

∑
� ∞

Xn
sin � � 2Wt � n�

� � 2Wt � n�

where
Xn

� f � n
2W

 �
4Communication theory is heavily indebtedto Wienerfor much of its basic philosophy and theory. His classic NDRC report,

TheInterpolation, Extrapolation and Smoothingof Stationary Time Series (Wiley, 1949),containsthe first clear-cut formulation of
communicationtheoryas a statistical problem, thestudy of operationson time series. This work, althoughchiefly concernedwith the
linear predictionand filtering problem, is an importantcollateralreferencein connectionwith the present paper. We may also refer
here to Wiener’s Cybernetics(Wiley, 1948),dealingwith thegeneralproblems of communicationandcontrol.

5For a proof of this theoremand furtherdiscussion seetheauthor’s paper“Communicationin thePresenceof Noise” publishedin
theProceedingsof theInstitute of RadioEngineers, v. 37,No. 1, Jan., 1949, pp. 10–21.
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In this expansion f � t � is represented asasum of orthogonalfunctions. ThecoefficientsXn of thevarious
termscan be consideredas coordinatesin an infinite dimensional“ function space.” In this space each
functioncorrespondsto precisely onepointandeachpoint to onefunction.

A function canbe considered tobe substantially limited to a time T if all theordinates Xn outsidethis
interval of time are zero. In this caseall but 2TW of the coordinateswill bezero. Thus functions limited to
a bandW anddurationT correspondto pointsin a space of2TW dimensions.

A subsetof the functionsof bandW anddurationT correspondsto a region in this space.For example,
thefunctionswhosetotal energy is lessthanor equalto E correspondto pointsin a2TW dimensionalsphere
with radius r � � 2WE.

An ensemble of functionsof limited duration and band will be representedby a probability distribution
p � x1 � � � � � xn � in the correspondingn dimensional space.If theensembleisnotlimited in timewecanconsider
the2TW coordinatesin agiven interval T to represent substantially thepartof thefunction in the interval T
and the probability distribution p � x1 � � � � � xn � to give the statisticalstructureof the ensemble for intervals of
thatduration.

20. ENTROPY OF A CONTINUOUS DISTRIBUTION

The entropy of a discretesetof probabilities p1 � � � � � pn hasbeendefinedas:

H � � ∑ pi logpi �
In an analogousmannerwe definethe entropy of a continuousdistribution with the density distribution
function p � x� by:

H � �
� ∞

� ∞
p � x� logp � x� dx�

With ann dimensional distribution p � x1 � � � � � xn � we have

H � �
�

� � �
�

p � x1 � � � � � xn � logp � x1 � � � � � xn � dx1
� � �

dxn �

If we have two arguments x andy (which may themselves be multidimensional) the joint andconditional
entropies ofp � x � y� aregivenby

H � x � y� � �
� �

p � x � y� logp � x � y� dxdy

and

Hx � y� � �
� �

p � x � y� log
p � x � y�
p � x� dxdy

Hy � x� � �
� �

p � x � y� log
p � x � y�
p � y� dxdy

where

p � x� � �
p � x � y� dy

p � y� � �
p � x � y� dx�

Theentropies ofcontinuousdistributionshave most (but not all) of the properties of thediscrete case.
In particularwehave the following:

1. If x is limited to acertainvolumev in its space,thenH � x� isamaximumandequalto logv whenp � x�
is constant (1� v) in the volume.
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2. With any two variablesx, y wehave

H � x � y� � H � x� �
H � y�

with equality if (and only if) x andy areindependent, i.e., p � x � y� � p � x� p � y� (apartpossibly from a
setof pointsof probability zero).

3. Considera generalizedaveraging operation of the following type:

p� � y� � �
a � x � y� p � x� dx

with �
a � x � y� dx � �

a � x � y� dy � 1 � a � x � y� � 0 �
Then the entropy of the averaged distribution p� � y� is equalto or greaterthan that of the original
distribution p � x� .

4. We have

H � x � y� � H � x� �
Hx � y� � H � y� �

Hy � x�

and

Hx � y� � H � y� �

5. Let p � x� beaone-dimensionaldistribution.Theformof p � x� givingamaximumentropysubjectto the
condition that the standard deviation of x befixedat � is Gaussian. To show thiswemust maximize

H � x� � �
�

p � x� logp � x� dx

with
� 2 � �

p � x� x2 dx and 1 � �
p � x� dx

asconstraints. This requires,by thecalculusof variations, maximizing
�

� � p � x� logp � x� � �
p � x� x2 � � p � x� � dx�

The condition for this is
� 1 � logp � x� � �

x2 � � � 0

andconsequently (adjusting theconstantsto satisfy the constraints)

p � x� � 1
� 2� �

e�
�
x2 � 2� 2 � �

Similarly in n dimensions, supposethesecondordermoments of p � x1 � � � � � xn � arefixed at Ai j :

Ai j
� �

� � �
�

xix j p � x1 � � � � � xn � dx1
� � �

dxn �

Thenthemaximumentropy occurs(by a similar calculation)whenp � x1 � � � � � xn � is the n dimensional
Gaussiandistribution with thesecond order momentsAi j .
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6. Theentropy of a one-dimensionalGaussiandistributionwhosestandarddeviation is � is given by

H � x� � log � 2� e� �
This iscalculatedas follows:

p � x� � 1
� 2� �

e�
�
x2 � 2� 2 �

� logp � x� � log � 2� �
� x2

2� 2

H � x� � �
�

p � x� logp � x� dx

� �
p � x� log � 2� � dx

�
�

p � x� x2

2� 2 dx

� log � 2� �
� � 2

2� 2

� log � 2� �
�

log � e
� log � 2� e� �

Similarly the n dimensional Gaussiandistribution with associatedquadratic form ai j is given by

p � x1 � � � � � xn � � � ai j
� 1
2

� 2� � n� 2
exp � � 1

2 ∑ai j xix j


andtheentropy canbecalculatedas

H � log � 2� e� n� 2 � ai j
� �

1
2

where � ai j
� is thedeterminantwhose elementsareai j .

7. If x is limited to a half line (p � x� � 0 for x � 0) andthefirst momentof x is fixedat a:

a � � ∞

0
p � x� xdx �

thenthemaximumentropy occurswhen

p � x� � 1
a

e�
�
x� a�

andisequalto logea.

8. Thereis oneimportant difference betweenthe continuousanddiscrete entropies. In thediscrete case
theentropy measuresin an absolute way the randomness of the chancevariable. In the continuous
casethemeasurementis relativeto thecoordinatesystem. If we change coordinatesthe entropy will
in generalchange.In factif we changeto coordinatesy1

� � �
yn thenew entropy isgivenby

H � y� � �
� � �

�
p � x1 � � � � � xn � J � x

y


logp � x1 � � � � � xn � J � x
y


dy1

� � �
dyn

whereJ
�

x
y � is theJacobianof the coordinatetransformation.On expandingthe logarithm andchang-

ing the variablesto x1
� � �

xn, we obtain:

H � y� � H � x� �
�

� � �
�

p � x1 � � � � � xn � logJ � x
y


dx1 � � � dxn �
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Thusthenew entropyis theold entropy lessthe expectedlogarithm of theJacobian.In thecontinuous
casetheentropycanbeconsideredameasureof randomnessrelativeto an assumed standard, namely
thecoordinatesystemchosenwith eachsmallvolumeelementdx1

� � �
dxn given equalweight. When

wechangethe coordinatesystemthe entropy in thenew systemmeasurestherandomnesswhenequal
volumeelementsdy1

� � �
dyn in thenew systemaregivenequalweight.

In spite of this dependenceon thecoordinate systemthe entropy conceptis as important in the con-
tinuouscase as thediscrete case. This is dueto the factthat the derivedconcepts of informationrate
andchannelcapacity dependon the differenceof two entropiesandthis dif ferencedoesnot depend
onthecoordinateframe,eachof thetwo termsbeingchangedby thesameamount.

Theentropy of a continuousdistributioncanbe negative. Thescaleof measurements setsanarbitrary
zerocorrespondingto auniformdistribution over aunit volume.A distributionwhichismoreconfined
thanthishaslessentropy andwill be negative. Theratesandcapacitieswill, however, always benon-
negative.

9. A particularcase of changingcoordinatesis thelineartransformation

y j
� ∑

i
ai j xi �

In thiscasetheJacobianis simply thedeterminant� ai j
� � 1 and

H � y� � H � x� �
log � ai j

� �
In thecaseof a rotation of coordinates(or any measurepreservingtransformation)J � 1 andH � y� �
H � x� .

21. ENTROPY OF AN ENSEMBL E OF FUNCTIONS

Consideranergodic ensembleof functionslimited to a certain bandof widthW cycles per second.Let

p � x1 � � � � � xn �
be the density distribution function for amplitudes x1 � � � � � xn at n successive sample points. We define the
entropy of theensembleperdegreeof freedomby

H � � � Lim
n� ∞

1
n

�
� � �

�
p � x1 � � � � � xn � logp � x1 � � � � � xn � dx1 � � � dxn �

We may also definean entropy H per secondby dividing, not by n, but by the time T in secondsfor n
samples.Sincen � 2TW, H � 2WH� .

With white thermalnoisep is Gaussianandwe have

H � � log � 2� eN�
H � W log2� eN�

For a given averagepower N, white noise hasthe maximumpossible entropy. This follows from the
maximizingpropertiesof theGaussiandistributionnotedabove.

Theentropy for a continuousstochastic process hasmany propertiesanalogousto that for discrete pro-
cesses.In the discretecasethe entropy wasrelatedto the logarithm of the probability of longsequences,
andto thenumber of reasonably probable sequencesof long length. In the continuouscase it is related in
a similar fashion to the logarithm of the probability density for a longseries of samples, andthevolumeof
reasonablyhigh probability in thefunctionspace.

Moreprecisely, if we assume p � x1 � � � � � xn � continuousin all thexi for all n, then for sufficiently largen

��� logp
n

� H �
��� � �
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for all choices of � x1 � � � � � xn � apart from a setwhose total probability is lessthan � , with � and � arbitrarily
small. This follows form the ergodic property if wedividethespaceinto a largenumberof small cells.

The relation of H to volume can be statedas follows: Under the sameassumptions consider the n
dimensional spacecorresponding to p � x1 � � � � � xn � . Let Vn � q� be the smallestvolume in this spacewhich
includes in its interior a total probability q. Then

Lim
n� ∞

logVn � q�
n

� H �

providedq doesnotequal0 or 1.
Theseresultsshow thatfor largen thereisaratherwell-definedvolume(atleastin thelogarithmicsense)

of high probability , and that within this volume the probability density is relatively uniform (again in the
logarithmic sense).

In the whitenoisecase thedistribution function isgivenby

p � x1 � � � � � xn � � 1

� 2� N � n� 2
exp �

1
2N ∑x2

i �

Sincethis dependsonly on ∑x2
i thesurfaces ofequalprobability densityarespheresand theentire distri-

bution hasspherical symmetry. The region of high probability is a sphere of radius � nN. As n � ∞ the
probability of being outside asphereof radius

�
n � N �

� � approacheszeroand 1
n timesthe logarithm of the

volumeof thesphereapproacheslog � 2� eN.
In thecontinuouscase it isconvenientto work notwith theentropy H of an ensemble but with aderived

quantity which we will call the entropy power. This is defined as the power in a white noiselimited to the
samebandasthe originalensemble and having the sameentropy. In other wordsif H � is the entropy of an
ensemble its entropy power is

N1
� 1

2� e
exp2H � �

In thegeometricalpicturethisamountsto measuringthe highprobabilityvolumeby thesquaredradiusof a
spherehavingthesamevolume.Sincewhitenoisehasthemaximumentropy for agiven power, theentropy
power of any noise is lessthanor equalto its actualpower.

22. ENTROPY LOSSIN L INEAR FILTERS

Theorem14: If anensemblehaving anentropy H1 perdegreeof freedomin bandW ispassed througha
filter with characteristicY � f � theoutput ensemblehasan entropy

H2
� H1

� 1
W

�
W

log � Y � f � � 2 d f �
Theoperation of thefilter isessentially alineartransformation of coordinates.If wethink of thediff erent

frequency componentsas theoriginal coordinatesystem,the new frequency componentsaremerely the old
onesmultiplied by factors. Thecoordinatetransformationmatrix is thusessentially diagonalizedin terms
of these coordinates. TheJacobianof the transformationis (for n sineandn cosinecomponents)

J � n

∏
i � 1

� Y � fi � � 2

wherethe fi areequallyspacedthroughthebandW. Thisbecomesin the limit

exp
1
W

�
W

log � Y � f � � 2 d f �
SinceJ is constant its averagevalueis thesamequantity and applyingthetheoremonthe changeof entropy
with a changeof coordinates,the result follows. We mayalsophraseit in termsof the entropy power. Thus
if the entropy powerof the first ensemble isN1 thatof thesecond is

N1exp
1
W

�
W

log � Y � f � � 2 d f �
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TABLE I

ENTROPY ENTROPY
GAIN POWER POWER GAIN IMPULSE RESPONSE

FACTOR IN DECIBELS

� ��

�
1 � � 1

e2 � 8 � 69
sin2 � t � 2�

t2 � 2

� ��

�
1 � � 2 � 2

e 	 4 � 5 � 33 2 
 sint
t3 � cost

t2 �

� ��

�
1 � � 3

0� 411 � 3 � 87 6 
 cost � 1
t4 � cost

2t2 � sint
t3 �

� ��

�


1 � � 2 � 2
e 	 2 � 2 � 67 �

2
J1

� t �
t

� ��

�

�
1

e2� � 8 � 69� 1� t2 � cos� 1 � � � t � cost �

The final entropy power is the initial entropy power multiplied by the geometric meangain of the filter. If
thegain is measuredin db, then the output entropy powerwill be increasedby the arithmeticmeandb gain
over W.

In Table I theentropy power losshasbeencalculated(andalso expressedin db) for a numberof ideal
gain characteristics. Theimpulsiveresponses ofthesefiltersarealso givenfor W � 2� , with phaseassumed
to be0.

The entropy loss for many other casescanbe obtainedfrom these results. For example the entropy
power factor 1� e2 for thefirst casealso appliesto any gaincharacteristicobtainfrom 1 � � by a measure
preserving transformation of the � axis. In particulara linearly increasinggainG � � � � � , or a “saw tooth”
characteristicbetween0 and 1 have the sameentropy loss. The reciprocalgain hasthe reciprocalfactor.
Thus1� � hasthefactor e2. Raising thegain to any power raisesthe factor to this power.

23. ENTROPY OF A SUM OF TWO ENSEMBLES

If wehavetwo ensembles offunctions f � � t � andg� � t � wecanform anew ensembleby “addition.” Suppose
the first ensemble has the probability density function p � x1 � � � � � xn � andthesecondq � x1 � � � � � xn � . Thenthe
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density functionfor thesumis given by theconvolution:

r � x1 � � � � � xn � � �
� � �

�
p � y1 � � � � � yn � q � x1 � y1 � � � � � xn � yn � dy1

� � �
dyn �

Physically this correspondsto adding the noises or signals represented by theoriginal ensembles of func-
tions.

Thefollowing result isderivedin Appendix 6.

Theorem15: Let theaveragepowerof two ensemblesbeN1 andN2 andlet their entropy powersbeN1

andN2. Thentheentropy powerof thesum,N3, is boundedby

N1
�

N2 � N3 � N1
�

N2 �
White Gaussian noise hasthe peculiar property that it canabsorb any other noise or signal ensemble

which may beadded to it with a resultant entropy powerapproximatelyequal to the sum of the white noise
power andthesignalpower(measuredfrom theaverage signalvalue,which isnormally zero),providedthe
signalpower issmall,in a certainsense,comparedto noise.

Consider the function spaceassociatedwith theseensembleshaving n dimensions. The white noise
correspondsto thesphericalGaussiandistribution in thisspace.Thesignalensemblecorrespondsto another
probabilitydistribution, not necessarilyGaussianor spherical.Let thesecondmomentsof this distribution
aboutits center of gravity beai j . That is, if p � x1 � � � � � xn � is the density distribution function

ai j
� �

� � �
�

p � xi � � i � � x j � � j � dx1
� � �

dxn

wherethe � i arethecoordinatesof thecenter of gravity. Now ai j is a positive definite quadratic form, and
we canrotateour coordinatesystemto align it with theprincipal directionsof this form. ai j is thenreduced
to diagonalform bii . We requirethateachbii besmall comparedto N, thesquaredradius of thespherical
distribution.

In this casetheconvolution of thenoiseandsignalproduceapproximately aGaussiandistributionwhose
correspondingquadratic form is

N
�

bii �
The entropy powerof thisdistribution is

� ∏ � N �
bii �

� 1� n

or approximately

� � � N � n � ∑bii � N � n � 1
� 1� n

�� N
� 1

n ∑bii �
Thelast termis thesignalpower, while thefirst is thenoisepower.

PART IV: THE CONTINUOUSCHANNEL

24. THE CAPACITY OF A CONTINUOUS CHANNEL

In a continuouschanneltheinputor transmittedsignalswill becontinuousfunctionsof time f � t � belonging
to a certainset,andthe outputor received signalswill be perturbedversionsof these. We will consider
only thecasewhereboth transmittedand received signalsarelimited to a certainbandW. They canthen
bespecified, for a timeT, by 2TW numbers,andtheir statisticalstructureby finite dimensional distribution
functions. Thus the statisticsof the transmittedsignal will bedeterminedby

P � x1 � � � � � xn � � P � x�
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and thoseof thenoiseby the conditional probability distribution

Px1 � � � � � xn � y1 � � � � � yn � � Px � y� �
Therate of transmission of information for a continuouschannelis definedin a way analogousto that

for adiscretechannel, namely
R � H � x� � Hy � x�

whereH � x� is the entropy of the inputandHy � x� the equivocation.Thechannelcapacity C is definedasthe
maximumof Rwhenwe vary the inputover all possible ensembles. Thismeansthatin a finite dimensional
approximationwe must varyP � x� � P � x1 � � � � � xn � andmaximize

�
�

P � x� logP � x� dx
�

� �
P � x � y� log

P � x � y�
P � y� dxdy�

This canbe written � �
P � x � y� log

P � x � y�
P � x� P � y� dxdy

usingthefactthat
� �

P � x � y� logP � x� dxdy � �
P � x� logP � x� dx. Thechannelcapacity is thusexpressed as

follows:

C � Lim
T � ∞

Max
P

�
x�

1
T

� �
P � x � y� log

P � x � y�
P � x� P � y� dxdy�

It is obvious in this form that R andC areindependentof the coordinate system sincethe numerator

and denominator in log
P � x � y�

P � x� P � y� will be multiplied by the samefactors when x andy aretransformedin

any one-to-oneway. This integralexpression for C is moregeneralthanH � x� � Hy � x� . Properly interpreted
(seeAppendix 7) it will alwaysexist while H � x� � Hy � x� mayassumeanindeterminateform ∞ � ∞ in some
cases.This occurs,for example,if x is limited to a surfaceof fewer dimensions thann in its n dimensional
approximation.

If the logarithmic baseusedin computing H � x� andHy � x� is two then C is the maximum numberof
binary digits that can be sent per second over the channel with arbitrarily small equivocation, just as in
the discrete case. This can be seenphysically by dividing the spaceof signals into a large numberof
small cells,sufficiently small so that the probability density Px � y� of signalx being perturbedto point y is
substantially constant over acell (eitherof x or y). If thecellsareconsidered asdistinct pointsthesituation is
essentially thesameasadiscretechannelandtheproofsused therewill apply. But it is clearphysically that
this quantizing of thevolumeinto individualpointscannotin any practical situation alter thefinal answer
significantly, provided theregionsaresufficiently small.Thus thecapacitywill be the limit of thecapacities
for thediscretesubdivisionsandthis is just thecontinuouscapacity definedabove.

On the mathematicalsideit canbeshown first (seeAppendix 7) thatif u is the message, x is the signal,
y is thereceived signal (perturbedby noise)andv is the recoveredmessage then

H � x� � Hy � x� � H � u� � Hv � u�
regardless ofwhat operationsareperformedon u to obtain x or on y to obtain v. Thusno matter how we
encodethebinary digits to obtainthesignal,or how we decodethereceived signal to recover themessage,
thediscreteratefor thebinary digits doesnot exceedthechannelcapacitywe have defined. On theother
hand,it is possibleunderverygeneralconditionsto find acodingsystemfor transmitting binarydigits at the
rateC with assmallan equivocation or frequency of errorsasdesired. This is true, for example,if, when we
take afinite dimensionalapproximatingspacefor thesignalfunctions, P � x � y� is continuousin both x andy
except at a setof pointsof probability zero.

An important special case occurswhenthe noise is addedto thesignaland is independentof it (in the
probability sense).Then Px � y� isa functiononly of thedifferencen � � y � x� ,

Px � y� � Q � y � x�
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andwe canassign a definite entropy to the noise (independentof the statistics of the signal), namely the
entropy of thedistributionQ � n� . Thisentropy will bedenotedby H � n� .

Theorem16: If thesignalandnoiseareindependentandthereceivedsignalisthesumof thetransmitted
signaland thenoise thenthe rateof transmission is

R � H � y� � H � n� �
i.e., theentropy of thereceived signal lesstheentropy of thenoise.Thechannelcapacityis

C � Max
P

�
x� H � y� � H � n� �

We have, sincey � x
�

n:
H � x � y� � H � x � n� �

Expandingthe left side andusing thefactthatx andn areindependent

H � y� �
Hy � x� � H � x� �

H � n� �
Hence

R � H � x� � Hy � x� � H � y� � H � n� �
SinceH � n� is independentof P � x� , maximizing R requiresmaximizing H � y� , theentropy of thereceived

signal. If thereare certainconstraintson the ensembleof transmittedsignals,theentropy of the received
signalmust bemaximizedsubjectto these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER L IMIT ATION

A simple application of Theorem16 is the casewhen thenoiseis a white thermalnoiseand the transmitted
signals arelimited to a certainaverage power P. Thenthe received signalshave anaveragepower P

�
N

whereN is theaveragenoisepower. Themaximumentropy for thereceived signalsoccurswhenthey also
formawhitenoiseensemblesincethisisthegreatest possible entropy for apower P

�
N andcanbeobtained

by a suitable choiceof transmittedsignals, namelyif they form a white noiseensemble of power P. The
entropy (per second)of thereceived ensembleis then

H � y� � W log2� e� P �
N � �

andthenoiseentropyis
H � n� � W log2� eN�

Thechannelcapacity is

C � H � y� � H � n� � W log
P

�
N

N
�

Summarizing wehave the following:

Theorem17: Thecapacity ofa channelof bandW perturbedby white thermalnoisepower N whenthe
averagetransmitterpower islimited to P is given by

C � W log
P

�
N

N
�

This meansthat by sufficiently involved encoding systemswe can transmit binary digits at the rate

W log2
P

�
N

N
bits per second,with arbitrarily small frequency of errors. It is not possible to transmit at a

higherrateby any encodingsystemwithouta definitepositive frequency of errors.
To approximatethis limiting rateof transmission thetransmittedsignals mustapproximate,in statistical

properties, a white noise.6 A systemwhich approachesthe ideal ratemay be described asfollows: Let

6This andother propertiesof the white noise case are discussed from the geometrical point of view in “Communication in the
Presenceof Noise,” loc. cit.
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M � 2s samplesof whitenoisebeconstructedeachof durationT. Theseareassignedbinarynumbersfrom
0 to M � 1. At the transmitter the message sequencesarebroken up into groupsof s andfor eachgroup
thecorrespondingnoise sample is transmitted as thesignal. At thereceiver theM samplesare known and
theactualreceived signal (perturbedby noise)is comparedwith eachof them. Thesamplewhich hasthe
least R.M.S.discrepancy from thereceived signal is chosenasthetransmittedsignalandthecorresponding
binary numberreconstructed. This process amounts to choosing the most probable (a posteriori) signal.
ThenumberM of noisesamplesusedwill depend onthe tolerable frequency � of errors, but for almost all
selectionsof sampleswehave

Lim
� � 0

Lim
T � ∞

logM � � � T �
T

� W log
P

�
N

N
�

sothatno matterhow small � is chosen,we can,by takingT sufficiently large, transmitas near aswe wish

to TW log
P

�
N

N
binary digits in the timeT.

Formulas similar to C � W log
P

�
N

N
for the white noise case have beendevelopedindependently

by several other writers, althoughwith somewhat differentinterpretations. We may mentionthe work of
N. Wiener,7 W. G. Tuller,8 andH. Sullivan in thisconnection.

In the caseof an arbitrary perturbing noise (not necessarilywhite thermalnoise)it does not appearthat
themaximizing probleminvolvedin determining thechannel capacityC canbesolvedexplicitly . However,
upperand lower boundscanbeset forC in termsof theaveragenoisepower N thenoiseentropy powerN1.
These boundsaresufficiently close together in most practical casesto furnish a satisfactory solution to the
problem.

Theorem18: The capacity ofa channelof bandW perturbedby an arbitrary noise is boundedby the
inequalities

W log
P

�
N1

N1
� C � W log

P
�

N
N1

where

P � averagetransmitterpower

N � averagenoisepower

N1
� entropy powerof the noise.

Hereagain the average power of the perturbedsignals will be P
�

N. The maximumentropy for this
power would occur if the received signal werewhite noiseandwould be W log2� e� P �

N � . It may not
be possible to achieve this; i.e., theremay not be any ensemble of transmittedsignals which, added to the
perturbingnoise, produceawhite thermalnoiseat thereceiver, but at least thissetsan upperboundto H � y� .
We have, therefore

C � MaxH � y� � H � n�
� W log2� e� P �

N � � W log2� eN1 �
This is the upperlimit given in thetheorem.Thelower limit canbeobtainedby considering therate if we
make the transmittedsignal a white noise,of powerP. In thiscasetheentropy powerof thereceived signal
mustbe at leastas greatasthat of a white noiseof power P

�
N1 sincewe have shown in in a previous

theoremthat the entropy power of the sum of two ensembles is greater than or equalto the sum of the
individualentropy powers. Hence

MaxH � y� � W log2� e� P �
N1 �

7Cybernetics, loc. cit.
8“TheoreticalLimitations on the Rate of Transmission of Information,” Proceedingsof the Institute of Radio Engineers, v. 37,

No. 5, May, 1949, pp. 468–78.
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and

C � W log2� e� P �
N1 � � W log2� eN1

� W log
P

�
N1

N1
�

As P increases, theupperand lowerboundsapproacheachother, so we haveasanasymptoticrate

W log
P

�
N

N1
�

If thenoiseis itself white, N � N1 andtheresult reducesto the formulaproved previously:

C � W log � 1
� P

N
 �

If thenoiseis Gaussianbut with a spectrumwhich is not necessarilyflat, N1 is the geometricmeanof
thenoisepower over thevariousfrequenciesin thebandW. Thus

N1
� exp

1
W

�
W

logN � f � d f

whereN � f � is thenoisepower at frequency f .

Theorem19: If wesetthecapacity for a given transmitterpowerP equalto

C � W log
P

�
N � �
N1

then � ismonotonic decreasingasP increasesandapproaches0 asa limit.

Supposethatfor agivenpower P1 the channel capacity is

W log
P1

�
N � �

1

N1
�

This meansthat the best signal distribution, say p � x� , whenaddedto the noise distribution q � x� , givesa
received distribution r � y� whose entropy power is � P1

�
N � �

1 � . Let usincreasethepower to P1
� �

P by
addingawhite noiseof power

�
P to thesignal. Theentropy of thereceived signal isnow at least

H � y� � W log2� e� P1
�

N � �
1

� �
P�

by application of the theorem on the minimum entropy power of a sum. Hence, since we canattain the
H indicated,theentropy of themaximizingdistribution mustbe at leastas greatand � must bemonotonic
decreasing.To show that � � 0 as P � ∞ considera signal which is white noisewith a large P. Whatever
theperturbingnoise,thereceived signalwill beapproximatelyawhitenoise,if P is sufficiently large,in the
sense of havingan entropy power approachingP

�
N.

26. THE CHANNEL CAPACITY WITH A PEAK POWER L IMIT ATION

In someapplications thetransmitter is limited not by the averagepoweroutput but by thepeakinstantaneous
power. The problemof calculatingthe channelcapacityis then that of maximizing(by variationof the
ensemble of transmittedsymbols)

H � y� � H � n�
subject to the constraint that all the functions f � t � in the ensemble be lessthanor equal to � S, say, for all
t. A constraint of this type does not work out aswell mathematicallyas the average power limitation. The

most we have obtainedfor this case is a lower bound valid for all
S
N

, an “asymptotic” upperbound(valid

for large
S
N

) andanasymptotic valueof C for
S
N

small.
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Theorem20: The channelcapacity C for a bandW perturbedby white thermalnoise of power N is
boundedby

C � W log
2

� e3

S
N

�

whereS is thepeakallowedtransmitterpower. For sufficiently large
S
N

C � W log
2� eS

�
N

N
� 1 �

� �

where� is arbitrarily small.As
S
N

� 0 (andprovidedthebandW startsat0)

C
�

W log

�
1

� S
N

�
� 1 �

We wish to maximizetheentropy of thereceived signal. If
S
N

is large this will occur very nearlywhen

we maximizethe entropy of the transmittedensemble.
Theasymptoticupperboundis obtainedby relaxingtheconditionsontheensemble.Let us supposethat

thepower islimited to Snotateveryinstant of time,but only at thesamplepoints. Themaximumentropy of
thetransmittedensembleundertheseweakenedconditionsis certainlygreaterthanor equalto thatunderthe
original conditions. Thisalteredproblemcanbesolvedeasily. Themaximumentropy occursif thedifferent
samplesareindependentandhave adistributionfunctionwhichisconstant from � � Sto

� � S. Theentropy
canbecalculatedas

W log4S�
Thereceived signalwill thenhaveanentropy lessthan

W log � 4S
�

2� eN� � 1 �
� �

with � � 0 as
S
N

� ∞ andthechannelcapacity is obtainedby subtracting theentropy of thewhite noise,

W log2� eN:

W log � 4S
�

2� eN� � 1 �
� � � Wlog � 2� eN� � W log

2� eS
�

N

N
� 1 �

� � �
This is thedesiredupperboundto the channelcapacity.

To obtain alower boundconsiderthesameensembleof functions. Letthesefunctionsbepassed through
an ideal filter with a triangulartransfer characteristic. The gain is to be unity at frequency 0 anddecline
linearly down to gain 0 at frequency W. We first show that the outputfunctionsof the filter have apeak

power limitation Sat all times(not just the sample points). First we note thata pulse
sin2� Wt

2� Wt
going into

thefilter produces
1
2

sin2 � Wt
� � Wt� 2

in the output. This function is nevernegative. Theinputfunction (in the generalcase) canbethoughtof as
thesum ofa seriesof shiftedfunctions

a
sin2� Wt

2� Wt

wherea, theamplitudeof thesample,isnotgreaterthan � S. Hencetheoutputisthesum of shifted functions
of thenon-negativeform abovewith thesamecoefficients. Thesefunctionsbeingnon-negative, thegreatest
positivevaluefor any t isobtainedwhenall the coefficientsa havetheir maximum positivevalues,i.e., � S.
In thiscase theinput functionwasa constantof amplitude� Sand sincethefilter hasunit gain for D.C.,the
outputis thesame.Hencetheoutput ensemblehasa peakpower S.
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The entropy of the output ensemble can be calculated from that of the input ensemble by using the
theoremdealingwith suchasituation.Theoutputentropy isequalto theinputentropy plus thegeometrical
meangain of thefilter: � W

0
logG2 d f � � W

0
log � W � f

W
 2

d f � � 2W �
Hencetheoutputentropy is

W log4S � 2W � W log
4S
e2

andthechannelcapacityis greaterthan

W log
2

� e3

S
N

�

Wenow wishto show that, for small
S
N

(peaksignalpowerover averagewhitenoisepower), the channel

capacity is approximately

C � W log

�
1

� S
N

� �

More preciselyC
�

W log

�
1

� S
N

�
� 1 as

S
N

� 0. Sincetheaverage signalpower P is lessthanor equal

to the peakS, it followsthat for all
S
N

C � W log

�
1

� P
N

� � W log

�
1

� S
N

� �

Therefore,if wecanfindan ensembleof functionssuchthat they correspondto aratenearly W log

�
1

� S
N

�
and are limited to band W andpeakS the result will be proved. Consider the ensemble of functions of the
following type. A seriesof t sampleshavethesamevalue,either

� � Sor � � S, thenthe next t sampleshave
thesamevalue,etc. Thevalue for a seriesis chosenat random,probability 1

2 for
� � Sand 1

2 for � � S. If
this ensemblebepassed througha filter with triangulargaincharacteristic (unit gain at D.C.), theoutputis
peaklimited to � S. Furthermorethe averagepower isnearlySandcanbemadeto approachthisby taking t
sufficiently large.Theentropy of thesum ofthisandthethermalnoisecanbefoundby applyingthetheorem
on thesum of a noiseand a smallsignal. This theoremwill apply if

� t
S
N

is sufficiently small. This canbeensuredby taking
S
N

small enough(after t is chosen).Theentropy power

will beS
�

N to asclose an approximationasdesired,andhencetherateof transmissionas near aswewish
to

W log

�
S

�
N

N
� �

PART V: THE RATE FOR A CONTINUOUSSOURCE

27. FIDELITY EVA LUATION FUNCTIONS

In the case of a discrete sourceof information we were able to determine a definite rate of generating
information,namely the entropy of theunderlyingstochastic process. With a continuoussourcethesituation
is considerablymore involved. In the first placea continuously variable quantitycanassume an infinite
numberof valuesand requires, therefore,an infinite numberof binary digits for exact specification. This
meansthatto transmit theoutputof a continuoussourcewith exact recoveryat thereceiving point requires,
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in general, a channelof infinite capacity (in bits per second). Since, ordinarily, channels have acertain
amountof noise, andthereforeafinitecapacity, exacttransmission is impossible.

This, however, evades the real issue. Practically, we are not interestedin exact transmission whenwe
have a continuoussource,but only in transmission to within a certaintolerance.Thequestion is, canwe
assignadefiniterateto a continuoussourcewhenwerequireonly acertainfidelity of recovery, measuredin
a suitable way. Of course,as the fidelity requirementsare increasedthe ratewill increase.It will be shown
that we can,in very generalcases,definesucha rate,havingthe propertythat it is possible,by properly
encoding the information, to transmit it over a channelwhose capacity is equalto therate in question,and
satisfythefidelity requirements. A channel of smallercapacity is insufficient.

It is first necessaryto give ageneral mathematicalformulation of the ideaof fidelity of transmission.
Consider the set of messagesof a long duration, say T seconds. The sourceis describedby giving the
probabilitydensity, in theassociatedspace,thatthesourcewill selectthemessagein questionP � x� . A given
communicationsystemis described(from theexternalpoint of view) by giving theconditionalprobability
Px � y� that if messagex is producedby thesourcetherecoveredmessageat thereceiving pointwill bey. The
systemasawhole(includingsourceand transmissionsystem)isdescribedby theprobability functionP � x � y�
of havingmessagex andfinaloutputy. If this function is known, thecompletecharacteristicsof thesystem
from the point of view of fidelity areknown. Any evaluationof fidelity must correspondmathematically
to anoperation applied to P � x � y� . This operation must at least have theproperties of a simple ordering of
systems; i.e.,it must bepossibleto sayof two systemsrepresented byP1 � x � y� andP2 � x � y� that,accordingto
our fidelity criterion,either(1) thefirst hashigher fidelity, (2) thesecond hashigher fidelity, or (3) they have
equal fidelity. Thismeans that acriterion of fidelity canberepresentedby a numericallyvaluedfunction:

v
�
P � x � y� �

whose argument rangesover possibleprobability functionsP � x � y� .
We will now show that undervery generalandreasonableassumptionsthe functionv

�
P � x � y� � canbe

written in a seemingly much more specializedform, namelyas an averageof a function � � x � y� over the set
of possiblevaluesof x andy:

v
�
P � x � y� � � � �

P � x � y� � � x � y� dxdy�
To obtain this we needonly assume(1) that thesourceandsystem are ergodic so thata very longsample
will be, with probability nearly1, typicalof the ensemble, and (2) that the evaluation is “ reasonable” in the
sense that it is possible, by observing a typical input andoutputx1 andy1, to form a tentative evaluation
on the basisof these samples;and if these samplesareincreased induration the tentative evaluation will,
with probability 1, approachthe exact evaluation basedon a full knowledge of P � x � y� . Let the tentative
evaluation be � � x � y� . Thenthefunction � � x � y� approaches(asT � ∞) aconstant for almost all � x � y� which
arein the highprobabilityregioncorrespondingto thesystem:

� � x � y� � v
�
P � x � y� �

andwemayalsowrite

� � x � y� �
� �

P � x � y� � � x � y� dxdy

since � �
P � x � y� dxdy � 1 �

This establishes thedesiredresult.
Thefunction � � x � y� hasthegeneralnatureof a“distance”betweenx andy.9 It measureshow undesirable

it is (accordingto our fidelity criterion)to receive y whenx is transmitted. The generalresult given above
canberestatedasfollows: Anyreasonableevaluationcanberepresentedasan average ofadistancefunction
over the setof messages and recovered messages x andy weightedaccordingto theprobabilityP � x � y� of
getting the pair in question, providedthe duration T of themessagesbe takensufficiently large.

Thefollowing aresimple examplesof evaluation functions:

9It is nota “metric” in thestrict sense,however, sincein generalit doesnotsatisfy either � � x � y� � � � y� x� or � � x� y� � � � y� z� � � � x � z� .
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1. R.M.S. criterion.
v � �

x � t � � y � t � � 2 �
In this very commonly usedmeasureof fidelity the distancefunction � � x � y� is (apartfrom a constant
factor) the squareof the ordinary Euclideandistancebetweenthe points x andy in the associated
functionspace.

� � x � y� � 1
T

� T

0
� x � t � � y � t � � 2

dt �

2. Frequency weightedR.M.S. criterion.Moregenerally onecanapply dif ferentweights to thedifferent
frequency componentsbeforeusing anR.M.S. measureof fidelity. This is equivalent to passing the
differencex � t � � y � t � througha shaping filter and thendetermining theaveragepower in the output.
Thuslet

e� t � � x � t � � y � t �
and

f � t � � � ∞

� ∞
e� � � k � t � � � d �

then

� � x � y� � 1
T

� T

0
f � t � 2 dt �

3. Absoluteerror criterion.

� � x � y� � 1
T

� T

0

�� x � t � � y � t �
�� dt �

4. Thestructureof theearand braindetermineimplicitly anevaluation, or ratheranumber of evaluations,
appropriate inthe caseof speechor musictransmission.Thereis, for example,an “ intelligibility”
criterion in which � � x � y� is equalto the relative frequency of incorrectly interpreted words when
messagex � t � is received asy � t � . Althoughwecannotgiveanexplicit representation of � � x � y� in these
casesit could, in principle, bedeterminedby sufficientexperimentation.Someof its propertiesfollow
from well-known experimental results in hearing,e.g., theearis relatively insensitiveto phaseand the
sensitivity to amplitude andfrequency is roughly logarithmic.

5. Thediscretecasecanbeconsidered asaspecialization in whichwehavetacitly assumedan evaluation
based onthefrequency of errors. Thefunction � � x � y� is thendefinedasthenumberof symbolsin the
sequencey differing from thecorrespondingsymbolsin x dividedby thetotal numberof symbols in
x.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVA LUATION

We arenow in a position to definea rateof generatinginformationfor a continuoussource.We aregiven
P � x� for the sourceandan evaluationv determinedby a distance function � � x � y� which will be assumed
continuousin both x andy. With a particularsystemP � x � y� thequality is measuredby

v � � �
� � x � y� P � x � y� dxdy�

Furthermoretherateof flow of binarydigits correspondingto P � x � y� is

R � � �
P � x � y� log

P � x � y�
P � x� P � y� dxdy�

We definetherateR1 of generating information for agivenquality v1 of reproductionto betheminimumof
R whenwe keepv fixedatv1 andvaryPx � y� . That is:

R1
� Min

Px
�
y�

� �
P � x � y� log

P � x � y�
P � x� P � y� dxdy
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subjectto the constraint:

v1
� � �

P � x � y� � � x � y� dxdy�
This meansthat we consider, in effect, all the communication systems that might be usedand that

transmitwith the requiredfidelity. The rateof transmissionin bits per secondis calculatedfor eachone
andwe choose thathaving theleast rate. This latter rateis theratewe assign thesourcefor thefidelity in
question.

The justification of thisdefinition lies in the following result:

Theorem21: If a sourcehasa rateR1 for a valuation v1 it ispossible to encodetheoutputof thesource
andtransmitit over a channelof capacityC with fidelity asnearv1 asdesiredprovidedR1 � C. This is not
possible if R1 � C.

The laststatement in the theoremfollows immediatelyfrom thedefinition of R1 andpreviousresults. If
it were not truewe could transmit morethanC bits per secondover a channelof capacityC. Thefirst part
of the theoremis proved by a methodanalogousto that usedfor Theorem11. We may, in thefirst place,
dividethe � x � y� space intoa largenumber of small cellsand represent the situation as a discretecase.This
will not changetheevaluationfunctionby more thanan arbitrarily small amount(whenthecellsarevery
small) becauseof the continuity assumedfor � � x � y� . Suppose that P1 � x � y� is the particular systemwhich
minimizesthe rate andgivesR1. We choosefrom the highprobabilityy’sa set atrandomcontaining

2
�
R1 � � � T

memberswhere � � 0 as T � ∞. With large T eachchosenpoint will beconnectedby a high probability
line (as inFig. 10) to a set of x’s. A calculation similar to that usedin provingTheorem11shows thatwith
largeT almostall x’sarecoveredby thefansfrom thechoseny pointsfor almost all choices ofthey’s. The
communication system to be used operates as follows: The selected points are assignedbinary numbers.
When a messagex is originatedit will (with probability approaching 1 asT � ∞) lie within at leastone
of thefans. Thecorrespondingbinary numberis transmitted(or oneof themchosenarbitrarily if thereare
several) over thechannel by suitable codingmeansto give asmallprobability of error. SinceR1 � C this is
possible. At thereceiving point thecorrespondingy is reconstructed andusedasthe recoveredmessage.

The evaluation v�1 for this system can be madearbitrarily close to v1 by taking T sufficiently large.
This is dueto thefactthatfor eachlongsampleof messagex � t � andrecoveredmessagey � t � the evaluation
approachesv1 (with probability 1).

It is interesting to note that, in this system,thenoise in the recoveredmessage is actually producedby a
kind of generalquantizingat thetransmitter andnotproducedby thenoise in thechannel.It is moreor less
analogousto thequantizingnoise in PCM.

29. THE CAL CULATION OF RATES

Thedefinition of the rate issimilar in many respectsto thedefinition of channel capacity. In the former

R � Min
Px

�
y�

� �
P � x � y� log

P � x � y�
P � x� P � y� dxdy

with P � x� andv1
� � �

P � x � y� � � x � y� dxdyfixed. In the latter

C � Max
P

�
x�

� �
P � x � y� log

P � x � y�
P � x� P � y� dxdy

with Px � y� fixedandpossibly oneor moreotherconstraints(e.g.,an averagepower limitation) of the form
K � � � P � x � y� � � x � y� dxdy.

A partial solution of thegeneralmaximizing problemfor determiningthe rate of a sourcecanbegiven.
UsingLagrange’smethodweconsider

� � 

P � x � y� log

P � x � y�
P � x� P � y�

� � P � x � y� � � x � y� � � � x� P � x � y� �
dxdy�
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Thevariational equation (whenwetake the first variation onP � x � y� ) leadsto

Py � x� � B � x� e� �
� �

x � y�

where
�

is determinedto givethe requiredfidelity and B � x� is chosento satisfy
�

B � x� e� �
� �

x � y� dx � 1 �

This shows that,with best encoding,theconditionalprobability of a certaincause for variousreceived
y, Py � x� will declineexponentiallywith thedistancefunction � � x � y� betweenthex andy in question.

In thespecialcasewherethedistancefunction � � x � y� dependsonly onthe(vector)dif ferencebetweenx
andy,

� � x � y� � � � x � y�
we have �

B � x� e� �
� �

x � y� dx � 1 �
HenceB � x� is constant, say � , and

Py � x� � � e� �
� �

x � y� �
Unfortunately theseformalsolutionsaredifficult to evaluatein particularcasesand seemto beof little value.
In fact,theactualcalculationof rateshasbeencarriedout in only a few very simplecases.

If thedistancefunction � � x � y� isthemeansquarediscrepancy betweenx andy and themessageensemble
is white noise,the ratecanbedetermined. In that casewehave

R � Min � H � x� � Hy � x� � � H � x� � MaxHy � x�

with N � � x � y� 2. But the MaxHy � x� occurswheny � x isawhitenoise, andisequaltoW1 log2� eNwhere
W1 is thebandwidth of themessageensemble. Therefore

R � W1 log2� eQ � W1 log2� eN

� W1 log
Q
N

whereQ is the averagemessagepower. This provesthe following:

Theorem22: Therate for a white noise sourceof power Q andbandW1 relative to anR.M.S.measure
of fidelity is

R � W1 log
Q
N

whereN is the allowedmeansquareerror betweenoriginal and recoveredmessages.

Moregenerallywith any messagesourcewecanobtaininequalitiesboundingtheraterelativeto amean
squareerrorcriterion.

Theorem23: Therate for any sourceof bandW1 isboundedby

W1 log
Q1

N
� R � W1 log

Q
N

whereQ is the averagepower of thesource,Q1 its entropy powerandN the allowedmeansquareerror.

Thelower boundfollows from thefact that the MaxHy � x� for a given � x � y� 2 � N occurs in the white
noisecase. Theupperboundresults if weplacepoints(usedin theproof of Theorem21) notin thebest way
but at randomin asphereof radius � Q � N.
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APPENDIX 5

Let S1 be any measurablesubsetof the g ensemble,and S2 the subset of the f ensemble which givesS1

undertheoperationT. Then
S1

� TS2 �
Let H � be theoperator which shifts all functions ina setby the time

�
. Then

H � S1
� H � TS2

� TH � S2

sinceT is invariant and therefore commuteswith H � . Henceif m� S� is theprobability measureof thesetS

m� H � S1 � � m� TH � S2 � � m� H � S2 �
� m� S2 � � m� S1 �

where the second equality is by definition of measure in the g space,the third sincethe f ensemble is
stationary, andthe lastby definition of g measureagain.

To prove that the ergodic property is preservedunderinvariant operations, let S1 be a subset of the g
ensemblewhich is invariant underH � , andlet S2 bethesetof all functions f which transform into S1. Then

H � S1
� H � TS2

� TH � S2
� S1

sothatH � S2 is included in S2 for all
�
. Now, since

m� H � S2 � � m� S1 �
this implies

H � S2
� S2

for all
�

with m� S2 � �� 0 � 1. ThiscontradictionshowsthatS1 doesnotexist.

APPENDIX 6

Theupperbound,N3 � N1
�

N2, is dueto the factthat the maximumpossible entropy for a power N1
�

N2

occurswhenwe have awhite noiseof this power. In this casethe entropy power isN1
�

N2.
To obtain the lower bound,suppose we have two distributionsin n dimensions p � xi � andq � xi � with

entropy powersN1 andN2. What form should p andq have to minimize the entropy power N3 of their
convolutionr � xi � :

r � xi � � �
p � yi � q � xi � yi � dyi �

Theentropy H3 of r is given by

H3
� �

�
r � xi � logr � xi � dxi �

We wish to minimize this subjectto the constraints

H1
� �

�
p � xi � logp � xi � dxi

H2
� �

�
q � xi � logq � xi � dxi �
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We considerthen

U � �
�

� r � x� logr � x� � �
p � x� logp � x� � � q � x� logq � x� � dx

� U � �
�

� � 1 �
logr � x� � � r � x� � � � 1 �

logp � x� � � p � x� � � � 1 �
logq � x� � � q � x� � dx�

If p � x� is variedataparticularargumentxi
� si , the variation in r � x� is

� r � x� � q � xi � si �
and

� U � �
�

q � xi � si � logr � xi � dxi �
�

logp � si � � 0

and similarly when q is varied.Hencethe conditionsfor aminimumare
�

q � xi � si � logr � xi � dxi
� �

�
logp � si �

�
p � xi � si � logr � xi � dxi

� � � logq � si � �

If we multiply thefirst by p � si � andthesecondby q � si � and integratewith respectto si weobtain

H3
� �

�
H1

H3
� � � H2

or solving for
�

and � andreplacing in the equations

H1

�
q � xi � si � logr � xi � dxi

� � H3 logp � si �

H2

�
p � xi � si � logr � xi � dxi

� � H3 logq � si � �

Now suppose p � xi � andq � xi � arenormal

p � xi � � � Ai j
� n� 2

� 2� � n� 2
exp � 1

2 ∑Ai j xix j

q � xi � � � Bi j
� n� 2

� 2� � n� 2
exp � 1

2 ∑Bi j xix j �

Thenr � xi � will alsobenormalwith quadratic form Ci j . If theinversesof theseformsareai j , bi j , ci j then

ci j
� ai j

�
bi j �

We wish to show that these functions satisfythe minimizing conditions if and only if ai j
� Kbi j andthus

givethe minimum H3 undertheconstraints. First we have

logr � xi � � n
2

log
1

2� � Ci j
� � 1

2 ∑Ci j xix j

�
q � xi � si � logr � xi � dxi

� n
2

log
1

2� � Ci j
� � 1

2 ∑Ci j sisj � 1
2 ∑Ci j bi j �

This should equal
H3

H1



n
2

log
1

2� � Ai j
� � 1

2 ∑Ai j sisj
�

which requiresAi j
� H1

H3
Ci j . In thiscaseAi j

� H1

H2
Bi j and both equations reduceto identities.
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APPENDIX 7

Thefollowing will indicateamoregeneral andmorerigorousapproachto thecentral definitionsof commu-
nication theory. Consideraprobability measurespacewhose elementsareorderedpairs � x � y� . Thevariables
x, y areto be identifiedasthepossibletransmittedandreceived signals ofsomelongdurationT. Letuscall
the set of all pointswhose x belongsto a subset S1 of x pointsthestrip over S1, and similarly theset whose
y belongto S2 the strip over S2. We divide x andy into a collection of non-overlappingmeasurable subsets
Xi andYi approximateto the rate of transmissionR by

R1
� 1

T ∑
i

P � Xi � Yi � log
P � Xi � Yi �

P � Xi � P � Yi �
where

P � Xi � is theprobability measureof thestrip over Xi

P � Yi � is theprobability measureof thestrip over Yi

P � Xi � Yi � is theprobability measureof the intersection of the strips�
A furthersubdivisioncannever decreaseR1. For let X1 bedividedinto X1

� X �1
�

X � �1 andlet

P � Y1 � � a P� X1 � � b
�

c

P � X �1 � � b P� X �1 � Y1 � � d

P � X � �1 � � c P� X � �1 � Y1 � � e

P � X1 � Y1 � � d
�

e�
Thenin thesumwe havereplaced(for theX1, Y1 intersection)

� d �
e� log

d
�

e
a � b �

c� by d log
d
ab

�
elog

e
ac

�

It is easilyshown that with the limitation we haveon b, c, d, e,

d

�
e

b
�

c
� d � e

� ddee

bdce

andconsequentlythe sumis increased. Thusthe variouspossible subdivisionsform a directedset, with
R monotonicincreasing with refinementof thesubdivision. We maydefineR unambiguously asthe least
upperboundfor R1 and write it

R � 1
T

� �
P � x � y� log

P � x � y�
P � x� P � y� dxdy�

This integral, understoodin the abovesense,includesboth thecontinuousanddiscrete casesandof course
many otherswhich cannotberepresented in either form. It is trivial in this formulation that if x andu are
in one-to-onecorrespondence,the rate from u to y is equalto thatfrom x to y. If v is any function of y (not
necessarilywith an inverse)then the rate from x to y is greater thanor equalto that from x to v since,in
the calculation of theapproximations, thesubdivisionsof y areessentially a finer subdivision of those for
v. Moregenerallyif y andv arerelatednot functionally but statistically, i.e.,we have aprobability measure
space� y� v� , then R� x � v� � R� x � y� . Thismeansthatany operationappliedto thereceived signal,eventhough
it involvesstatisticalelements,doesnot increaseR.

Another notion which should be definedprecisely in an abstract formulation of the theory is that of
“dimension rate,” that is the averagenumberof dimensionsrequired per secondto specify a memberof
an ensemble. In the band limited case2W numbers per second aresufficient. A general definition canbe
framedas follows. Let f � � t � be anensemble of functionsandlet � T � f � � t � � f � � t � � be a metric measuring
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the“distance”from f � to f � over the time T (for example theR.M.S.discrepancy over this interval.) Let
N � � � � � T � be the least numberof elements f which canbe chosen suchthat all elementsof the ensemble
apartfrom asetof measure� arewithin thedistance � of at least oneof those chosen.Thuswearecovering
the space towithin � apartfrom a setof small measure� . We define the dimension rate

�
for theensemble

by the triple limit � � Lim
� � 0

Lim
� � 0

Lim
T � ∞

logN � � � � � T �
T log �

�
This is a generalizationof themeasuretypedefinitionsof dimension in topology, and agreeswith theintu-
itivedimension ratefor simple ensembleswhere thedesiredresult is obvious.
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